InterviewSolution
| 1. |
The value of \(\frac{[(1.3)^2+(1.3\times1.5)+(1.5)^2]\times[(1.3)^2-1.95+(1.5)^2]}{(1.3)^4+(1.3)^2(2.25)+(1.5)^4}\) is: |
|
Answer» Correct Answer - Option 3 : 1 Given: \(\frac{[(1.3)^2+(1.3\times1.5)+(1.5)^2]\times[(1.3)^2-1.95+(1.5)^2]}{(1.3)^4+(1.3)^2(2.25)+(1.5)^4}\) Concept used: The numerator of the given expression is of the form = (a2 + ab + b2) × (a2 – ab + b2) Expanding and solving we get: (a2 + ab + b2) × (a2 – ab + b2) = a4 – a3b + a2b2 + a3b – a2b2 + ab3 + a2b2 – ab3 + b4 ⇒ (a2 + ab + b2) × (a2 – ab + b2) = a4 + a2b2 + b4 Denominator is of the form = a4 + a2b2 + b4 Calculation: Numerator: [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – 1.95 + (1.5)2] = [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – (1.3 × 1.5) + (1.5)2] ⇒ [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – (1.3 × 1.5) + (1.5)2] = (1.3)4 + (1.3)2 × (1.5)2 + (1.5)4 Denominator: (1.3)4 + (1.3)2 (2.25) + (1.5)4 = (1.3)4 + (1.3)2 × (1.5)2 + (1.5)4 Now, Numerator/Denominator = [(1.3)4 + (1.3)2 × (1.5)2 + (1.5)4]/ [(1.3)4 + (1.3)2 × (1.5)2 + (1.5)4] ⇒ Numerator/Denominator = 1 ∴ The value of the given expression is 1. |
|