InterviewSolution
Saved Bookmarks
| 1. |
The value of \(\frac{1}{{(7\; + \;4\sqrt 3 })^2} + \frac{1}{{(7\; - \;4\sqrt 3 )^2}}\) is1. 1942. 1543. 1844. 149 |
|
Answer» Correct Answer - Option 1 : 194 Given: \(\frac{1}{{(7\; + \;4√ 3 })^2} + \frac{1}{{(7\; - \;4√ 3 )^2}}\) Concept used: Componendo and dividendo Calculation: \(\frac{1}{{(7\; + \;4√ 3 })^2} + \frac{1}{{(7\; - \;4√ 3 )^2}}\) ⇒ \(\frac{(7\; - \;4√3)^2}{{(7\; + \;4√ 3 })^2(7\; - \;4√3)^2} + \frac{(7\; + \;4√3)^2}{{(7\; - \;4√ 3 )^2(7 \;+\;4√3)^2}}\) ⇒ \(\frac{(7\; - \;4√3)^2}{{1}} + \frac{(7\; + \;4√3)^2}{1}\) ⇒ 72 + (4√3)2 – 2 × 7 × 4√3 + 72 + (4√3)2 + 2 × 7 × 4√3 ⇒ 49 + 48 – 56√3 + 49 + 48 + 56√3 ⇒ 49 + 48 + 49 + 48 ⇒ 194 ∴ Required value is 194 |
|