1.

Use Euclid algorithm find the hcf of 1180 and 1445 and find the value of 1180m and 1445n

Answer» Here we have to find HCF of 1190 and 1445 and express the HCF in the form 1190m + 1445n.1445 = 1190 ×\xa01 + 2551190 = 255 ×\xa04 + 170255 = 170 ×\xa01 + 85170 = 85 ×\xa02 + 0So, now the remainder is 0, then HCF is 85Now,85 = 255 - 170= (1445 - 1190) - (1190 - 255 ×\xa04)= 1445 - 1190 - 1190 + 255 ×\xa04= 1445 - 1190 ×\xa02 + (1445 - 1190) ×\xa04= 1445 - 1190 ×\xa02 + 1445 × 4 - 1190 ×\xa04= 1445 ×\xa05 - 1190 ×\xa06= 1190 ×\xa0(- 6) + 1445 ×\xa05= 1190m + 1445n , where m = - 6 and n = 5


Discussion

No Comment Found