1.

Use euclid division lemma to show that the cube of any positive integer is of the form 9m, 9m+1,9m+8

Answer» Let a = 3q + r\xa0{tex}: 0 \\leq r < 3{/tex}\xa0{tex}\\therefore \\quad a = 3 q ; \\text { then } a ^ { 3 } = 27 q ^ { 3 } = 9 m ; \\text { where } m = 3 q ^ { 3 }{/tex}{tex}\\text { when } a = 3 q + 1 ; \\text { then } a = 27 q ^ { 2 } + 27 q ^ { 2 } + 9 q + 1{/tex}{tex}= 9 \\left( 3 q ^ { 3 } + 3 q ^ { 2 } + q \\right) + 1{/tex}{tex}= 9 m + 8 \\quad \\left( \\text { where } m = 3 q ^ { 3 } + 3 q ^ { 2 } + q \\right){/tex}{tex}\\text { when } a = 3 q + 2 ; \\text { then } a ^ { 3 } = ( 3 q + 2 ) ^ { 2 }{/tex}{tex}= 27 q ^ { 3 } + 54 q ^ { 2 } + 36 q + 8{/tex}{tex}= 9 m + 8 \\quad \\left( \\text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \\right){/tex}{tex}= 9 m + 8 \\quad \\left( \\text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \\right){/tex}Hence, cubes of any positive integer is\xa0either of the from 9m, (9m + 1) or (9m + 8).


Discussion

No Comment Found