1.

Use Euclid\'s division algorithm to find HCF of 441,567,693

Answer» The Euclidean Algorithm for finding HCF\xa0(A,B)\xa0is as follows:If\xa0A=0\xa0then HCF\xa0(A,B)=B,\xa0since the HCF\xa0(0,B)=B,\xa0and we can stop. If\xa0B=0\xa0then HCF\xa0(A,B)=A,\xa0since the HCF\xa0(A,0)=A,\xa0and we can stop. Write\xa0A\xa0in quotient remainder form\xa0(A=BQ+R)Find HCF\xa0(B,R)\xa0using the Euclidean Algorithm since\xa0HCF\xa0(A,B)=HCF(B,R)Here, HCF of\xa0441\xa0and\xa0567\xa0can be found as follows:-567=441×1+126⇒\xa0441=126×3+63⇒\xa0126=63×2+0Since remainder is\xa00, therefore,\xa0H.C.F of\xa0(441,567)\xa0is\xa0=63Now H.C.F of\xa063\xa0and\xa0693\xa0is693=63×11+0Therefore, H.C.F of\xa0(63,693)=63Thus, H.C.F of\xa0(441,567,693)=63.


Discussion

No Comment Found