1.

Usingproperties of determinants, prove the following:`|3"a"-"a"+"b"-"a"+"c""a"-"b"3"b""c"-"b""a"-"c""b"-"c"3"c"|=3("a"+"b"+"c")("a b"+"b c"+"c a")`

Answer» Let the value of the given determinant be `Delta`. Then,
`Delta =|{:(" "3a,-a+b, -a+c),(a-b, " "3b, c-b),(a-c, b-c, 3c):}|`
`=|{:(a+b+c,-a+b, -a+c),(a+b+c, " "3b, c-b),(a+b+c, b-c, " "3c):}| [C_(1) to (C_(1) + C_(2) + C_(3))]`
`=(a+b+c)*|{:(1,-a+b, -a+c),(1, " "3b, c-b),(1, b-c, 3c):}| ["taking (a+b+c) common from"R_(1)]`
`=(a+b+c)*|{:(1,-a+b, -a+c),(1, 2b+a, a-b),(0, a-c, 2c+a):}| [R_(2) to (R_(2) -R_(1)) "and"(R_(3) -R_(1))]`
`=(a+b+c)*1*|{:(2b+a, a-b),(a-c, 2c+a):}| ["expanded by"C_(1)]`
` = (a+b+c)[(2b+a)(2c+a)-(a-c)(a-b)]`
` =(a+b+c)[(4bc+2ab+2ac+a^(2))-(a^(2)-ab-ac +bc)]`
`=3(a+b+c)(ab+bc+ca).`
Hence, `Delta = 3(a+b+c) (ab+bc+ca)`


Discussion

No Comment Found