\t\t\t10-20215-30-60-30020-30725-20-14030-401035-10-10040-50154500\xa050-602055+10+200+70060-701665+20+32070-80675+30+180\xa0{tex}\\Sigma f = 76{/tex}\xa0\xa0\xa0{tex}\\Sigma f d m = + 400{/tex}\tAfter multiplying fd with m for all the values and finding the total of fdm, we apply the values to the formula of mean given below:Now,\xa0{tex}\\overline { X } = A + \\frac { \\Sigma f d m } { \\Sigma f } \\Rightarrow \\overline { X } = 45 + \\frac { 400 } { 76 }{/tex}{tex}\\Rightarrow \\quad \\overline { X } = 45 + 5.26 = 50.26{/tex}
1.

What is the assume mean method, with example

Answer» For calculating arithmetic mean from this data, We have to first take the midpoint of each class interval, represented by \'m\' in the table. Then decide on anyone midpoint as assumed mean and find out the deviations.Calculation of Arithmetic Mean Marks Number of Students (f) Mid-Value (m) dm (m-A) A=45 fdm \xa0


Discussion

No Comment Found