1.

what is the ratio of areas of a circle and equilateral triangle whose diamiter and a side are equal

Answer» Let radius of circle be r cmIts area =\xa0{tex}\\pi{/tex}r2\xa0sq unitsSide of an equilateral triangle = diameter of the circle = 2rArea of the equilateral triangle{tex}= \\frac { \\sqrt { 3 } } { 4 } \\times ( 2 r ) ^ { 2 }{/tex}{tex}= \\frac { \\sqrt { 3 } } { 4 } \\times 4 r ^ { 2 } = \\sqrt { 3 } r ^ { 2 }{/tex}{tex}\\frac { \\text { Area of the circle } } { \\text { Area of the triangle } } = \\frac { \\pi r ^ { 2 } } { \\sqrt { 3 } r ^ { 2 } } = \\frac { \\pi } { \\sqrt { 3 } }{/tex}


Discussion

No Comment Found