InterviewSolution
Saved Bookmarks
| 1. |
What is the value of (1 + tan2θ) (1 − sinθ) (1 + sinθ)? |
|
Answer» To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ) ∵ (a – b) (a + b) = a2 – b2 ∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ) = (1 + tan2θ) (1 – sin2θ) Now, as sin2θ + cos2θ = 1 ⇒ 1 – sin2θ = cos2θ………(i) Also, we know that 1 + tan2θ = sec2θ ……(ii) Using (i) and (ii), we have (1 + tan2θ) (1 − sinθ) (1 + sinθ) = (1 + tan2θ) (1 – sin2θ) = sec2θ cos2θ ∵secθ = \(\frac{1}{cosθ}\) sec2θ = \(\frac{1}{cos^2θ}\) ⇒ (1 + tan2θ) (1 − sinθ) (1 + sinθ) = sec2θ cos2θ = \(\frac{1}{cos^2θ}{cos^2θ}= 1\) |
|