1.

What is the value of (1 + tan2θ) (1 − sinθ) (1 + sinθ)?

Answer»

To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ) 

∵ (a – b) (a + b) = a2 – b2 

∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ) 

= (1 + tan2θ) (1 – sin2θ) 

Now, as sin2θ + cos2θ = 1 

⇒ 1 – sin2θ = cos2θ………(i)

Also, we know that 1 + tan2θ = sec2θ ……(ii) 

Using (i) and (ii), we have 

(1 + tan2θ) (1 − sinθ) (1 + sinθ) 

= (1 + tan2θ) (1 – sin2θ) 

= sec2θ cos2θ

∵secθ = \(\frac{1}{cosθ}\) 

sec2θ = \(\frac{1}{cos^2θ}\) 

⇒ (1 + tan2θ) (1 − sinθ) (1 + sinθ)

= sec2θ cos2θ

\(\frac{1}{cos^2θ}{cos^2θ}= 1\)



Discussion

No Comment Found