

InterviewSolution
Saved Bookmarks
1. |
Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix} 1/a& a^2 & bc \\[0.3em] 1/b& b^2 &ac \\[0.3em] 1/c &c^2& ab\end{vmatrix}\) |
Answer» Let Δ = \(\begin{vmatrix} 1/a& a^2 & bc \\[0.3em] 1/b& b^2 &ac \\[0.3em] 1/c &c^2& ab\end{vmatrix}\) Multiplying R1, R2 and R3 with a, b and c respectively we get, ⇒ Δ = \(\begin{vmatrix} 1& a^3 & abc \\[0.3em] 1& b^3 &abc \\[0.3em] 1 &c^3& abc\end{vmatrix}\) Taking, a b c common from C3 gives, ⇒ Δ = \(\begin{vmatrix} 1& a^3 & 1 \\[0.3em] 1& b^3 &1 \\[0.3em] 1 &c^3& 1\end{vmatrix}\) As, C1 = C3 hence value of determinant is zero. |
|