1.

Write the value of the square root of i.

Answer»

Let 

\(\sqrt{i}\)  = \(\sqrt{a+ib}\) .........….1 

Squaring both sides, we get 

i2 = (a2- b2) +2aib 

By comparing real and imaginary term, we get 

2ab = 1 and a2- b2 = 0 

By solving these we get 

a = b = \(\frac{1}{\sqrt{2}}\)   

By putting value of a and b in 1, we get

\(\sqrt{i}\)  = ±  \(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{2}}\)i    

\(\sqrt{i}\) = ±  \(\frac{1}{\sqrt{2}}\) (1+i)



Discussion

No Comment Found