InterviewSolution
Saved Bookmarks
| 1. |
X:1/a+b+x = 1/a +1/b +1/x ; a#0, b#0 ; x#0, |
| Answer» we have,\xa0{tex}\\frac{1} {a+b+x}{/tex}=\xa0{tex}\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{x}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1} {a+b+x}{/tex}\xa0-\xa0{tex}\\frac{1}{x}{/tex}\xa0=\xa0{tex}\\frac{1}{a}{/tex}+\xa0{tex}\\frac{1}{b}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}-\\frac{a+b} {x(a+b+x)}{/tex}\xa0=\xa0{tex}\\frac{a+b}{ab}{/tex}cancel (a+b) from both sides & cross multiply\xa0{tex}\\Rightarrow{/tex}\xa0{tex}-ab =x(x+a+b) {/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2 + (a+b)x + ab = 0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(x+a) (x+b) = 0{/tex}{tex}\\therefore{/tex}\xa0{tex}x = -a\\ or\\ -b{/tex} | |