1.

x^2+(a/a+b+a+b/a)x+1=0 by quadratic formula

Answer» We have, {tex}x^2 +({a \\over a+b}+ {a+b \\over a})x +1 = 0{/tex}{tex}\\implies x^2 + {a \\over a+b}x + {a+b \\over a}x + 1=0{/tex}{tex}\\implies x (x + {a \\over a+b}) +{a+b \\over a}(x + {a \\over a+b}) = 0 {/tex}{tex}\\implies (x + {a \\over a+b}) (x +{a+b \\over a}) = 0{/tex}{tex}Either \\, x + {a \\over a+b} = 0 \\,or\\, x + {a+b \\over a}=0{/tex}{tex}\\implies x = -{a \\over a+b} ,\\, - {a+b \\over a}{/tex}{tex}\\therefore x = -{a \\over a+b} ,\\, - {a+b \\over a}{/tex} are the required roots.


Discussion

No Comment Found