InterviewSolution
Saved Bookmarks
| 1. |
x, y and z are real numbers. If x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1, then what is the value of 2(xy + yz + zx) ?1. 32. -23. 24. -3 |
|
Answer» Correct Answer - Option 2 : -2 Given: x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1 Formula used: x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx Calculations: x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) ⇒ 17 – 3 × 1 = 2 × (x2 + y2 + z2 – xy – yz – zx) ⇒ 7 = x2 + y2 + z2 – xy – yz – zx ⇒ x2 + y2 + z2 = xy + yz + zx + 7 (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx ⇒ (2)2 = xy + yz + zx + 7 + 2xy + 2yz + 2zx ⇒ 3(xy + yz + zx) = -3 ⇒ xy + yz + zx = -1 ⇒ 2(xy + yz + zx) = -2 ∴ The value of 2(xy + yz + zx) is -2. |
|