

InterviewSolution
Saved Bookmarks
1. |
`x^(y) + y^(x) = 1` |
Answer» `x^(y) + y^(x) = 1` `rArr u+v = 1 " where "u=x^(y) " and "v=y^(x)` `rArr (du)/(dx) + (dv)/(dx) = 0 " "....(1)` `"Now " u = x^(y)` `rArr "log"u = "log"(x^(y)) = y"log"x` `rArr (1)/(u) (du)/(dx) = y * (d)/(dx)"log"x + "log"x * (d)/(dx)y` `rArr (du)/(dx) = u[(y)/(x) + "log"x(dy)/(dx)]` `=x^(y)[(y)/(x) + "log"x(dy)/(dx)] = y * x^(y-1) + x^(y) "log"x(dy)/(dx)` `"and " v = y^(x)` `rArr " log"v = "log"y^(x) = x"log"y` `rArr (1)/(v) (dv)/(dx) = x (d)/(dx)"log" y + "log" y * (d)/(dx)x` `rArr (dv)/(dx) = v[(x)/(y)(dy)/(dx) + "log"y * 1]` `=y^(x)[(x)/(y)(dy)/(dx) + "log"y]` `= x * y^(x-1) (dy)/(dx) + y^(x) "log"y` From equation (1) `y * x^(x-1) + x^(y)"log" x (dy)/(dx) + x * y^(x-1)(dy)/(dx) + y^(x) "log" y = 0` `rArr (dy)/(dx) (x^(y)"log"x + x * y^(x-1))` `=-(yx^(y-1) + y^(x)"log"y)` `rArr (dy)/(dx) = -(y * x^(y-1) + y^(x) "log"y)/(x^(y) "log"x + x * y^(x-1))` |
|