InterviewSolution
Saved Bookmarks
| 1. |
X4 + X-4 = 194, X > 0, then what is the value of \(X + \frac{1}{X} + 2\) ?1. 142. 43. 84. 6 |
|
Answer» Correct Answer - Option 4 : 6 Given: X4 + 1/X4 = 194 Concept used: (a + b)2 = a2 + b2 + 2ab Calculation: X4 + 1/X4 = 194 ⇒ (X2)2 + 1/(X2)2 = 194 ⇒ (X2)2 + 1/(X2)2 + 2 = 194 + 2 [Adding 2 both sides] ⇒ (X2)2 + 1/(X2)2 + 2 × X2 × 1/X2 = 196 ⇒ (X2 + 1/X2)2 = 196 ⇒ X2 + 1/X2 = √196 ⇒ X2 + 1/X2 = 14 ⇒ X2 + 1/X2 + 2 = 14 + 2 [Adding 2 both sides] ⇒ X2 + 1/X2 + 2 × X × 1/X = 16 ⇒ (X + 1/X)2 = 16 ⇒ X + 1/X = √16 ⇒ X + 1/X = 4 X + 1/X + 2 = 4 + 2 ⇒ X + 1/X + 2 = 6 ∴ The value of X + 1/X + 2 is 6. |
|