1.

`xy + y^(2) = tan x + y `

Answer» `xy + y^(2) = tan x + y `
Differentiate both sides w.r.t. x
`(x(dy)/(dx)+y.1)+ 2y(dy)/(dx)= sec^(2)x + (dy)/(dx)`
`rArr (dy)/(dx) (x + 2y - 1)=sec^(2)x - y`
`rArr (dy)/(dx) =(sec^(2) x - y)/(x + 2y-1)`


Discussion

No Comment Found