

InterviewSolution
Saved Bookmarks
1. |
`y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1` |
Answer» `y = sin ^(-1)((1-x^(2))/(1+ x^(2)))` Let x = tantheta `rArr theta^(-1) x` `rArr y = sin ^(-1)((1- tan^(2)theta)/(1+ tan^(2)theta))` `= sin ^(-1)((cos ^(2)theta-sin^(2)theta)/(cos^(2)theta+ sin^(2)theta))` `= sin ^(-1)(cos 2 theta) = sin ^(-1) sin((pi)/(2)-2 theta)` `= (pi)/(2) - 2 theta= (pi)/(2)-2tan^(-1) x`. `rArr (dy)/(dx)=(d)/(dx)((pi)/(2)-2tan^(-1)x.)` `= 0 - (2xx1)/(1+x^(2))=-(2)/(1+x^(2))`. |
|