InterviewSolution
Saved Bookmarks
| 1. |
यदि दो वास्तविक अचरों `a` और `b` के लिए व्यंजक `ax^(3)+3x^(2)-8x+b,(x+2)` और `(x-2)` से पूर्णतः विभाजित है तोA. `a=2, b=12`B. `a=12, b=2`C. `a=2,b=-12`D. `a=-2, b=12` |
|
Answer» Correct Answer - C `ax^(3)+3x^(2)-8x+b` is divisible by `(x+2)` and `(x-2)` `:. (x=2)` and `(x-2)` are factors `:.x+2=0impliesx=-2` `x-2-0impliesx=2` Put `x=-2` `:.a(-2)^(3)+3(-2)^(2)-8(-2)+b=0` `=-8a+12+16+b=0` `-8a+b+28=0` `-8a+b=-28`.........i and put `x=2` `implies a(2)^(3)+3(2)^(2)-8xx2+b=0` `implies 8a+12-16+b=0` `8a+b-4=0` `8a+b=4`..........ii From equation i & ii `:. -8a+b=-28` `ul(8a+b=4)` `2b=-24` `b=-12` `a=2` |
|