1.

यदि `x^(2)=x=5` है तो `(x+3)^(3)+1/((x+30^(3))`A. 140B. 110C. 130D. 120

Answer» Correct Answer - B
According to the question
`=[(x+3)^(3)+1/((x+3)^(3))]`
Let `t=x+3,x=t-3`
`x^(2)+x=5` (given)
`(x+1)x=5`
`(t-3+1)(t-3)=5`
`(t-2)(t-3)=5`
`t^(2)-3t-2t+6=5`
`t^(2)-5t=-1`
`t+1/t=5`
`(x+3)^(3)+1/((x+3)^(3))`
`=t^(3)+1/(t^(3))`
`=(t+1/t)^(3)-3xx txx 1/t(t+1/t)`
`=5^(3)-3xx5=125-15`
`=110=(x+3)^(3)+1/((x+3)^(3))=110`


Discussion

No Comment Found

Related InterviewSolutions