InterviewSolution
Saved Bookmarks
| 1. |
यदि `x^(2)=x=5` है तो `(x+3)^(3)+1/((x+30^(3))`A. 140B. 110C. 130D. 120 |
|
Answer» Correct Answer - B According to the question `=[(x+3)^(3)+1/((x+3)^(3))]` Let `t=x+3,x=t-3` `x^(2)+x=5` (given) `(x+1)x=5` `(t-3+1)(t-3)=5` `(t-2)(t-3)=5` `t^(2)-3t-2t+6=5` `t^(2)-5t=-1` `t+1/t=5` `(x+3)^(3)+1/((x+3)^(3))` `=t^(3)+1/(t^(3))` `=(t+1/t)^(3)-3xx txx 1/t(t+1/t)` `=5^(3)-3xx5=125-15` `=110=(x+3)^(3)+1/((x+3)^(3))=110` |
|