InterviewSolution
Saved Bookmarks
| 1. |
यदि `x^(4)+1/(x^(4))=119` और `xlt1` है तो `x^(3)+1/(x^(3))` का मान ज्ञात करें।A. `6sqrt(13)`B. `8sqrt(13)`C. `13sqrt(13)`D. `10sqrt(13)` |
|
Answer» Correct Answer - D `x^(4)+1/(x^(4))=119, xgt1` `:. x^(4)+1/(x^(4))+2=119+2=121` `(x^(2)+1/(x^(2)))^(2)=(11)^(2)` `x^(2)+1/(x^(2))=11` `x^(2)+1/(x^(2))+2=11+2` `(x+1/x)^(2)=13` `x+1/x=sqrt(13)` `implies` Taking cube both sides `x^(3)+1/(x^(3))+3sqrt(13)=(sqrt(13))^(3)` `x^(3)+1/(x^(3))+3sqrt(13)=13sqrt(13)` `x^(3)+1/(x^(3))=10sqrt(13)` |
|