InterviewSolution
Saved Bookmarks
| 1. |
यदि `(x-a^(2))/(b+c)+(x-b^(2))/(c+a)+(x-c^(2))/(a+b)=4(a+b+c)`, then `x` किसके बराबर है ?A. `(a+b+c)^(2)`B. `a^(2)+b^(2)+c^(2)`C. `ab+bc+ca`D. `a^(2)+b^(2)+c^(2)-ab-bc-ca` |
|
Answer» Correct Answer - A `(x-a^(2))/(b+c)=(x-b^(2))/(c+a)+(x-c^(2))/(a+b)` `=4(a+b+c)` assume `a=1, b=0, c=1` Make sure thre will no `(0/0)` form `: (x-1)/(1+0)+(x-0)/(1+1)+(x-1)/(1+0)=4` `implies x-1+x/2+x-1=4xx2` `x+x/2+x=8+2` `(5x)/2=10` `x=4` Now put values in options take option. `(a)(a+b+c)^(2)-(1+0+1)^(2)=4` |
|