InterviewSolution
Saved Bookmarks
| 1. |
यदि `x` एक परिमेय संख्या है और `((x+1)^(3)-(x-1)^(3))/((x+1)^(2)-(x-1)^(2))=2` है तो `x` के अंश तथा हर का योग ज्ञात करें।A. 3B. 4C. 5D. 7 |
|
Answer» Correct Answer - B `((x+1)^(3)-(x-1)^(3))/((x+1)^(2)-(x-1)^(2))=2` `implies A^(3)-B^(3)+(A-B)(A^(2)+AB+B^(2))` `A^(2)-B^(2)=(A-B)(A+B)` `implies ((x+1-x+1)((x+1)^(2)+(x-1)(x+1)+(x-1)^(2)))/((x+1-x+1)(x+1+x-1))` `=2` `implies ((x^(2)+1+3x+x^(2)-1+x^(2)+1-2x))/((2x))=2` `implies (3x^(2)+1)/(2x)=` `implies 3x^(2)+1=4x` `3x^(2)-4x+1=0` `3x^(2)-3x-x+1=0` `3x(x-1)-1(x-1)=0` `(3x-1)(x-1)=0` `implies 3x-1=0` `x=1/3` `implies x-1=0` for `x=1=1/1` By adding numinator and denominator `1+1=2` No option is satisfied `:. x=1/3` `1+3=4` |
|