InterviewSolution
Saved Bookmarks
| 1. |
यदि `x=(sqrt(3)+1)/(sqrt(3)-1)` & `y=(sqrt(3)-1)/(sqrt(3)+1)`, है तो `x^(2)+y^(2)` का मान क्या होगा?A. 14B. 13C. 15D. 10 |
|
Answer» Correct Answer - A `(sqrt(3)+1)/(sqrt(3)-)` and `y=(sqrt(3)-1)/(sqrt(3)+1)` `implies :. x=1/y` `x=(sqrt(3)+1)/(sqrt(3)-1)xx(sqrt(3)+1)/(sqrt(3)+1)` `=(sqrt(3)+1)^(2)/(3-1)` `= (3+1+2sqrt(3))/2=(4+2sqrt(3))/2` `=(2+sqrt(3))` `x^(2)=(2+sqrt(3))^(2)=4+3+4sqrt(3)` `=7+4sqrt(3)` `y^(2)=1/(7+4sqrt(3))xx(7-4sqrt(3))/(7-4sqrt(3))` `y^(2)=(7-4sqrt(3))/(49-48)=(7-4sqrt(3))/1=` `7-4sqrt(3)` `:. x^(2)+y^(2)=7+4sqrt(3)+7-4sqrt(3)` Alternate: `x^(2)+y^(2)=x^(2)+1/(x^(2))` `=(x+1/x)^(2)-2( :. x=1/y)` `=(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1^(2))-2` `=[((sqrt(3)+1)^(2)+(sqrt(3)-1)^(2))/(3-1)]^(2)-2` `:. (a+b)^(2)+(a-b)^(2)=2(a^(2)+b^(2))` `=[(2((sqrt(3))^(2)+(1)^(2)))]^(2)-2` `=(3+1)^(2)-2=16-2=14` |
|