InterviewSolution
Saved Bookmarks
| 1. |
यदि `x=sqrt(3)+sqrt(2)` है तो `(x^(3)+1/(x^(3)))` का मान ज्ञात करें।A. `6sqrt(3)`B. `12sqrt(3)`C. `18sqrt(3)`D. `24sqrt(3)` |
|
Answer» Correct Answer - C `x=sqrt(3)+sqrt(2)` `:. 1/x=sqrt(3)-sqrt(2)` `x^(3)+1/(x^(3))` `:. x^(3)=(sqrt(3)+sqrt(2))^(3)` `=(sqrt(3))^(3)+(sqrt(2))^(3)+3xxsqrt(3)xxsqrt(2)(sqrt(3)+sqrt(2))` `=3sqrt(2)+2sqrt(2)+3sqrt(6)(sqrt(3)+sqrt(2))` `=3sqrt(3)+2sqrt(2)+9sqrt(2)+6sqrt(3)` `x^(3)=9sqrt(3)+11sqrt(2)` `1/(x^(3))=9sqrt(3)-11sqrt(2)` `x^(3)+1/(x^(3))=9sqrt(3)+11sqrt(2)+9sqrt(3)-11sqrt(2)` `=18sqrt(3)` Alternate: `x=sqrt(3)+sqrt(2)` `1/x=sqrt(3)-sqrt(2)` and `x+1/x=sqrt(3)+sqrt(2)+sqrt(3)-sqrt(2)` `=2sqrt(3)` `x^(3)+1/(x^(3))=(x+1/x)^(3)-3(x+1/x)` `=(2sqrt(3))^(3)-3(2sqrt(3))` `=24sqrt(3)-6sqrt(3)=18sqrt(3)` |
|