Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Write the Variable, Coefficient and Constant in the given algebraic expression, Expressionx + 73y - 25x22xy + 11\(-\frac{1}{2}p + 7\)-8 + 3aVariableCoefficientConstant

Answer»
Expressionx + 73y - 25x22xy + 11\(-\frac{1}{2}p + 7\)-8 + 3a
Variablexyxx,ypa
Coefficient1352-\(\frac{1}{2}\)3
Constant7-20117-8
2.

4/2 = 2 denotes a(A) numerical equation (B) algebraic expression(C) equation with a variable (D) false statement

Answer»

(A) numerical equation

4/2 = 2

By cross multiplication we get,

4 = 4

3.

x – 4 = – 2 has a solution(A) 6 (B) 2 (C) – 6 (D) – 2

Answer»

(B) 2

Consider the given equation x – 4 = -2

Transform – 4 from left hand side to right hand side it becomes 4.

x = – 2 + 4

x = 2

4.

Write the corresponding expressions.z is multiplied by -3 and the result is subtracted from 13.

Answer»

z multiplied by -3 = -3z

– 3z subtracted from 13 = 13 – (-3z) = 13 + 3z

5.

q/2 = 3 has a solution(A) 6 (B) 8 (C) 3 (D) 2

Answer»

(A) 6

Consider the given equation q/2 = 3

By cross multiplication we get, q = 6

6.

The expression obtained when x is multiplied by 2 and then subtracted from 3 is(A) 2x – 3 (B) 2x + 3 (C) 3 – 2x (D) 3x – 2

Answer»

(C) 3 – 2x

From the question it is given that,

X is multiplied by 2 = x × 2 = 2x

Then, x is multiplied by 2 and then subtracted from 3 = 3 – 2x

7.

The area of a square having each side x is(A) x × x (B) 4x (C) x + x (D) 4 + x

Answer»

(A) x × x

We know that, area of square = side × side

Given, square having a side x.

So, area of triangle = x × x

= x2

8.

Savitri has a sum of Rs x. She spent Rs 1000 on grocery, Rs 500 on clothes and Rs 400 on education, and received Rs 200 as a gift. How much money (in Rs) is left with her?(A) x – 1700 (B) x – 1900 (C) x + 200 (D) x – 2100

Answer»

(A) x – 1700

From the question it is given that,

Savitri has a sum of Rs x

She spent money on grocery = ₹ 1000

She spent money on clothes = ₹ 500

She spent money on education = ₹ 400

She received gift = ₹ 200

Total money spent by Savitri = 1000 + 500 + 400 = ₹ 1900

Then,

Total money left with her after deducting = ₹ (x – 1900)

Therefore, money left with her after adding gift money = (x – 1900) + 200

= x – 1700

9.

Find the unit digit of the following numeric expressions.(i) 11420 + 11521 + 11622(ii) 1000010000 + 1111111111

Answer»

(i) 11420 + 11521 + 11622

In 11420 unit digit of base 114 is 4 and power is 20 (even power).

∴ Unit digit of 11420 is 6.

In 11521 unit digit of base 115 is 5 and power is 21 (Positive Integer).

∴ Unit digit of 11521 is 5.

In 11622 unit digit of base 116 is 6 and power is 22 (Positive Integer).

∴ Unit digit of 11622 is 6.

∴ Unit digit of 11420 + 11521 + 11622 can be obtained by adding 6 + 5 + 6 = 17.

Unit digit of 11420 + 11521 + 11622 is 7.

(ii) 1000010000 + 1111111111

In 1000010000 the unit digit of base 10000 is 0 and power is 10000.

Unit digit of 1000010000 is 0.

In 1111111111 the unit digit of base 11111 is 1 and power is 11111.

Unit digit of 1111111111 is 1.

Unit digit of 10000100000 + 1111111111 is 0 + 1 = 1

10.

The unit digit of (32 x 65)0 is(i) 2(ii) 5(iii) 0(iv) 1

Answer»

Answer is (iv) 1

11.

Simplify using laws of exponents.(i) 35 x 38(ii) a4 x a10(iii) 7x x 72(iv) 25 ÷ 23(v) 188 ÷ 184(vi) (64)3(vii) (xm)0(viii) 95 x 35(ix) 3y x 12y(x) 256 x 56

Answer»

(i) 35 x 38 

[since am x an = am + n]

= 35 + 8 

= 313 

(ii) a4 x a10

= a4 + 10 

= a14

(iii) 7x x 7= 7x + 2

(iv) 25 ÷ 23 

[since \(\frac{a^m}{a^n}\) = am - n]

= 25 - 3

= 22

(v) 188 ÷ 184

= 188 - 4 

= 184

(vi) (64)3

[since (am)n = am x n]

= 64 x 3 

= 612

(vii) (xm)0

[since (am)n = am x n; a0 = 1]

= xm x 0 

= x0 

= 1

(viii) 95 x 35

[since (am x bm) = (a  x b)m]

= (9 x 3)5 

= 275

(ix) 3y x 12y

= (3 x 12)y 

= 36y

(x) 256 x 56

= (25 x 5)

= 1256

12.

Complete the following table by forming expressions using the terms given. One is done for you.TermsAlgebraic Expressions7x, 2y, -5z7x + 2y2y - 5z7x - 5x7x + 2y - 5z3p, 4q, 5r9m, n, -8ka, -6b, 3c12xy, 9x, -y

Answer»
TermsAlgebraic Expressions
7x, 2y, -5z7x + 2y2y - 5z7x - 5x7x + 2y - 5z
3p, 4q, 5r3p + 4q4q + 5r3p + 5r3p + 4q + 5r
9m, n, -8k9m + nn - 8k3m - 8k9m + n - 8k
a, -6b, 3ca - 6b-6b + 3ca + 3ca - 6b + 3c
12xy, 9x, -y12xy + 9x9x - y12xy - y12xy + 9x - y
13.

Express the following in exponential form. 1. 6 x 6 x 6 x 6 2. t x t3. 5 x 5 x 7 x 7 x 7 4. 2 x 2 x a x a

Answer»

1. 6 x 6 x 6 x 6 = 61+1+1+1 

= 64 

[Since am x an = am+n]

2. t x t = t1+1 

= t2

3. 5 x 5 x 7 x 7 x 7 = 51+1 x 71+1+1 

= 52 x 73

4. 2 x 2 x a x a = 21+1 x a1+1 

= 22 x a2 

= (2a)2

14.

If a = 3 and b = 2, then find the value of the following.(i) ab + ba(ii) aa – bb(iii) (a + b)b(iv) (a – b)a

Answer»

(i) ab + ba

a = 3 and b = 2

We get 32 + 23 = (3 x 3) + (2 x 2 x 2) 

= 9 + 8 

= 17

(ii) (aa – bb)

Substituting a = 3 and b = 2

We get 32 – 22 = (3 x 3 x 3) – (2 x 2) 

= 27 – 4 

= 23

(iii) (a + b)b

Substituting a = 3 and b = 2

We get (3 + 2)2 = 52 

= 5 x 5 

= 25

(iv) (a – b)a

Substituting a = 3 and b = 2

We get (3 – 2)3 = 13

= 1 x 1 x 1 

= 1

15.

Observe the equation (10 + y)4 = 50625 and find the value of y.(i) 1(ii) 5(iii) 4(iv) 0

Answer»

Answer is (ii) 5

16.

a x a x a x a x a equal to(i) a5(ii) 5a(iii) a5(iv) a + 5

Answer»

Answer is (i) a5

17.

Simplify the following and write the answer in exponential form.(i) 32 x 34 x 38(ii) 615 ÷ 610(iii) a3 x a2(iv) 7x x 72(v) (52)3 ÷ 53

Answer»

(i) 32 x 34 x 32 = 32+4+8 

= 314 

[∵ am x an = am+n]

So 32 x 34 x 32 = 314

(ii) 615 ÷ 610 = 615-10 

= 65 

[∵ am x an = am-n]

(iii) a3 x a2 = a3+2 

= a5

(iv) 7x x 72 = 7x+2

(v) (52)3 ÷ 53 

= 52 x 3 ÷ 53 

= 56 ÷ 53 

[∵ (am)n = am x n]

18.

Observe and complete the following table. First one is done for you.NumberExpanded formExponential formBaseExponent2166 x 6 x 66363144122(-5) x (-5)-5m5343731562525 x 25 x 25

Answer»
NumberExpanded formExponential formBaseExponent
2166 x 6 x 66363
14412 x 12122122
25(-5) x (-5)(-5)2-52
m5m x m x m x m x mm5m5
3437 x 7 x 77373
1562525 x 25 x 25253257
19.

Simply the following.1. 23 ÷ 252. 116 ÷ 1133. (-5)3 ÷ (-5)24. 73 ÷ 735. 154 ÷ 15

Answer»

1. 23 ÷ 25

= 23-5 

= 2-2

[since \(\frac{a^m}{a^n}\) = am-n]

2. 116 ÷ 113

= 116-3 

= 113

[since \(\frac{a^m}{a^n}\) = am-n]

3. (-5)3 ÷ (-5)2

= (-5)3-2 

= (-5)1

[since \(\frac{a^m}{a^n}\) = am-n]

4. 73 ÷ 73

= 73-3 

= 70  

= 1

[since \(\frac{a^m}{a^n}\) = am-n; a0 = 1]

5. 154 ÷ 15

= 154 ÷ 15

= 154-1 

= 153

[since \(\frac{a^m}{a^n}\) = am-n]

20.

Simplify and write the following in exponential form.1. 23 x 252. p2 x P43. x6 (x) x44. 31 x 35 x 345. (-1)2 x (-1)3 x (-1)5

Answer»

1. 23 x 25 = 23+5 

= 28 

[since am x an = am+n]

2. p2 x p4 = p2+4 

= p6 

[since am x an = am+n]

3. x6 x x4 = x6 + 4 

= x10 

[since am x an = am+n]

4. 31 x 35 x 34 = 31+5 x 34 

[since am x an = am+n]

= 36 x 34 

[since am x an = am+n]

= 310

5. (-1)2 x (-1)3 x (-1)5

= (-1)2+3 x (-1)5 

[Since am x an = am+n]

= (-1)5 x (-1)5

= (-1)5+5 

[Since am x an = am+n]

= (-1)10

21.

The value of x in the equation a13 = x3 x a10 is(i) a(ii) 13(iii) 3(iv) 10

Answer»

Answer is (i) a

22.

Group the like terms together from the following: 6x, 6, -5x, –5, 1, x, 6y, y, 7y, 16x, 3

Answer»

We have 6x, -5x, x, 16x are like terms

6y, y, 7y, are like terms 

6, –5, 1, 3 are like terms

23.

(5 + 20)(-20 – 5) = ? (i) -425 (ii) 375 (iii) -625 (iv) 0

Answer»

(iii) -625 

(50 + 20) (-20 – 5) = -(5 + 20)2 

= – (25)2 

= – 625

24.

Find the unit digit of the following exponential numbers:(i) 6411(ii) 2918(iii) 7919(iv) 10432

Answer»

(i) 6411 Unit digit of base 64 is 4 and the power is 11 (odd power).

∴ Unit digit of 6411 is 4.

(ii) 2918 Unit digit of base 29 is 9 and the power is 18 (even power).

Therefore, unit digit of 2918 is 1.

(iii) 7919 Unit digit of base 79 is 9 and the power is 19 (odd power).

Therefore, unit digit of 7919 is 9.

(iv) 10432 Unit digit of base 104 is 4 and the power is 32 (even power).

Therefore, unit digit of 10432 is 6.

25.

Find the unit digit of the following exponential numbers:(i) 10621(ii) 258(iii) 3118(iv) 2010

Answer»

(i) 10621 Unit digit of base 106 is 6 and the power is 21 and is positive.

Thus the unit digit of 10621 is 6.

(ii) 258 Unit digit of base 25 is 5 and the power is 8 and is positive.

Thus the unit digit of 258 is 5.

(iii) 3118 Unit digit of base 31 is 1 and the power 18 and is positive.

Thus the unit digit of 3118 is 1.

(iv) 2010 Unit digit of base 20 is 0 and the power 10 and is positive.

Thus the unit digit of 2010 is 0.

26.

If a + b = 5 and a2 + b2 = 13, then ab = ?(i) 12(ii) 6(iii) 5(iv) 13

Answer»

(ii) 6

(a + b)2 = 25

13 + 2ab = 25 

2ab = 12 

ab = 6

27.

Using the identity (a + b)(a – b) = a2 – b2, find the following product.(i) (p + 2) (p – 2)(ii) (1 + 3b) (3b – 1)(iii) (4 – mn) (mn + 4)(iv) (6x + 7y) (6x – 7y)

Answer»

(i) (p + 2) (p – 2)

Substituting a = p; b = 2 in the identity 

(a + b) (a – b) = a2 – b2, we get

(p + 2) (p – 2) = p2 – 22

(ii) (1 + 3b) (3b – 1)

(1 + 3b) (3b -1) can be written as (3b + 1) (3b – 1)

Substituting a = 36 and b = 1 in the identity

(a + b) (a – b) = a2 – b2, we get

(3b + 1) (3b – 1) = (3b)2 – 12 

= 32 x b2 – 12

(3b + 1) (3b – 1) = 9b2 – 12

(iii) (4 – mn) (mn + 4)

(4 – mn) (mn + 4) can be written as (4 – mn) (4 + mn) = (4 + mn) (4 – mn)

Substituting a = 4 and b = mn is

(a + b) (a – b) = a2 – b2, we get

(4 + mn) (4 – mn) = 42 – (mn)2 

= 16 – m2 n2

(iv) (6x + 7y) (6x – 7y)

Substituting a = 6x and b = 7y in

(a + b) (a – b) = a2 – b2, we get

(6x + 7y) (6x – 7y) = (6x)2 – (7y)2 

= 62x2 – 72y2

(6x + 7y) (6x – 7y) = (6x)2 – (7y)2 

= 62x2 – 72y2

(6x + 7y) (6x – 7y) = 36x2 – 49y2

28.

Find the degree of (2a2 + 3ab – b2) – (3a2 - ab - 3b2)

Answer»

(2a2 + 3ab – b2) – (3a2 – ab – 3b2)

= (2a2 + 3ab – b2) + (- 3a2 + ab + 3b2)

= 2a2 + 3ab – b2 – 3a2 + ab + 3b2

= 2a2 – 3a2 + 3ab + ab + 3b2 – b2

= 2a2 – 3a2 + ab (3 + 1) + b2(3 – 1)

= – a2 + 4 ab + 2b2

Hence degree of the expression is 2.

29.

Why should we subtract 5 and not some other number ? why don’t we add 5 on both sides? Discuss.

Answer»

Given x + 5 = 12 

(i) Our aim is to find the value of x. Which means we have to eliminate the other values from LHS. 

Since 5 is given with x it should be subtracted. 

(ii) If we add 5 on both sides we cannot eliminate the numbers from LHS and we get x + 10.

30.

From the sum of 5x + 7y -12 and 3x – 5y + 2, subtract the sum of 2x – 7y – 1 and – 6x + 3y + 9.

Answer»

Sum of 5x + 7y – 12 and 3x – 5y + 2.

= 5x + 7y- 12 + 3x – 5y + 2 = (5 + 3) x + (7 – 5) y + ((- 12) + 2)

= 8x + 2y – 10. 

Again Sum of 2x – 7y – 1 and – 6x + 3y + 9 

= 2x – 7y – 1 + (- 6x + 3y + 9) = 2x – 7y – 1 – 6x + 3y + 9 

= (2 – 6) x + (- 7 + 3) y + (- 1 + 9) 

= – 4x – 4y + 8 

Now 8x + 2y – 10 – (-4x – 4y + 8) 

= 8x + 2y – 10 + (4x + 4y – 8) 

= 8x + 2y – 10 + 4x + 4y – 8 

= (8 + 4) x + (2 + 4) y + ((- 10) + (- 8)) 

= 12x + 6y – 18

31.

When we subtract ‘a’ from ‘-a’, we get ___ (i) a (ii) 2a (iii) -2a (iv) -a

Answer»

(iii) -2a 

– a – a = – 2a

32.

Find the degree of the terms(i) x2(ii) 4xyz(iii) \(\frac{7x^2y^4}{xy}\)(iv) \(\frac{x^2\times\,y^2}{x\times\,y^2}\)

Answer»

(i) x2

The exponent in x2 is 2. 

∴ Degree of the term is 2.

(ii) 4xyz

In 4xyz the sum of the powers of x, y and z as 3.

(iii) \(\frac{7x^2y^4}{xy}\)

We have \(\frac{7x^2y^4}{xy}\) = 7x2-1 y4-1 

= 7x1y3 

[Since \(\frac{a^m}{a^n}\) = am-n]

In 7 xy3 the sum of the powers of x and y is 4(1 + 3 = 4)

Thus degree of the expression is 4.

(iv) \(\frac{x^2\times\,y^2}{x\times\,y^2}\)

We have \(\frac{x^2\times\,y^2}{x\times\,y^2}\) = x2-1 y2-2 

= x1 y0 

= x1 

[∵ y0 = 1]

The exponent of the expression is 1.

33.

What should be subtracted from 2m + 8n + 10 to get – 3m + 7n + 16?

Answer»

To get the expression we have to subtract – 3m + 7n + 16 from 2m + 8n + 10. 

(2m + 8n + 10) – (-3m + 7n + 16) = 2m + 8n + 10 + 3m – 7n – 16 

= (2 + 3)m + (8 – 7)n + (10 – 16) 

= 5m + n – 6

34.

Find the sum of the following expressions (i) 7p + 6q, 5p – q, q + 16p(ii) a + 5b + 7c, 2a + 106 + 9c(iii) mn + t, 2mn – 2t, – 3t + 3mn(iv) u + v, u – v, 2u + 5v, 2u – 5v(v) 5xyz – 3xy, 3zxy – 5yx

Answer»

(i) (7p + 6q) + (5p – q) + (q + 16p) = 7p + 6q + 5p – q + q + 16p

= (7p + 5p + 16p) + (6q – q + q)

= (7 + 5 + 16)p + (6 – 1 + 1)q

= (12 + 16)p + 6q = 28p + 6q

(ii) (a + 5b + 7c) + (2a + 10b + 9c) = a + 5b + 7c + 2a + 10b + 9c

= a + 2a + 5b + 10b + 7c + 9c

= (1 + 2)a + (5 + 10)b + (7 + 9)c

= 3a + 15b + 16c

(iii) (mn + t) + (2mn – 2t) + (-3t + 3mn)

= mn + t + 2mn – 2t + (-3t) + 3mn

= (mn + 2mn + 3mn) + (t – 2t – 3t)

= (1 + 2 + 3)mn + (1 – 2 – 3)t

= 6mn + (1 – 5)t

= 6mn + (- 4)t

= 6mn – 4t

(iv) (u + v) + (u – v) + (2u + 5v) + (2u – 5v)

= u + v + u – v + 2u + 5v + 2u – 5v

= u + u + 2u + 2u + v – v + 5v – 5v

= (1 + 1 + 2 + 2)u + (1 – 1 + 5 – 5)v = 6u + 0v

= 6u

(v) 5xyz – 3xy + 3zxy – 5yx = 5xyz + 3xyz – 3xy – 5xy

= (5 + 3)xyz + [(-3) + (-5)]xy = 8xyz + (-8)xy

= 8xyz – 8xy

35.

Factorise the following using suitable identity.(i) x2 – 8x + 16(ii) y2 + 20y + 100(iii) 36m2 + 60m + 25(iv) 64x2 – 112xy + 49y2(v) a2 + 6ab + 9b2 – c2

Answer»

(i) x2 – 8x + 16

x2 – 8x + 16 = x2 – (2 x 4 (x) x) + 42

This expression is in the form of identity

a2 – 2ab + b2 = (a – b)2

x2 – 2 (x) 4 (x) x + 42 = (x – 4)2

∴ x2 – 8x + 16 = (x – 4) (x – 4)

(ii) y2 + 20y + 100

y2 + 20y + 100 = y2 + (2 x (10)) y + (10 x 10)

= y2 + (2 x 10 x y) + 102

This is of the form of identity

a2 + 2 ab + b2 = (a + b)2

y2 + (2 x 10 x y) + 102 = (y + 10)2

y2 + 20y + 100 = (y + 10)2

y2 + 20y + 100 = (y + 10) (y + 10)

(iii) 36m2 + 60m + 25

36m2 + 60m + 25 = 62 m2 + 2 x 6m x 5 + 52

This expression is of the form of identity

a2 + 2ab + b2 = (a + b)2

(6m)2 + (2 x 6m x 5) + 52

= (6m + 5)2

36m2 + 60m + 25 = (6m + 5) (6m + 5)

36.

Evaluate the following, using suitable identity.(i) 297 x 303 (ii) 990 x 1010 (iii) 51 x 52

Answer»

(i) 297 x 303

297 x 303 = (300 – 3) (300 + 3)

Taking a = 300 and b = 3, then

(a + b) (a – b) = a2 – b2 becomes

(300 + 3) (300 – 3) = 3002 – 32

303 x 297 = 90000 – 9

297 x 303 = 89,991

(ii) 990 x 1010

990 x 1010 = (1000 – 10) (1000 + 10)

Taking a = 1000 and b = 10, then

(a – b) (a + b) = a2 – b2 becomes

(1000 – 10) (1000 + 10) = 10002 – 102

990 x 1010 = 1000000 – 100

990 x 1010 = 999900

(iii) 51 x 52

= (50 + 1) (50 + 1)

Taking x = 50, a = 1 and b = 2

Then (x + a) (x + b) = x2 + (a + b) x + ab becomes

(50 + 1) (50 + 2) = 502 + (1 + 2) 50 + (1 × 2)

2500 + (3) 50 + 2 = 2500 + 150 + 2

51 x 52 = 2652

37.

Find the unit digit of 1549101 + 654120

Answer»

1549101 + 654120

In 1549101, the unit digit of base 1549 is 9 and power is 101 (odd power).

Therefore, unit digit of the 1549101 is 9.

In 654120, the unit digit of base 6541 is 1 and power is 20 (even power).

Therefore, unit digit of the 654120 is 1.

∴ Unit digit of 1549101 + 654120 is 9 + 1 = 10

∴ Unit digit of 1549101 + 654120 is 0.

38.

The addition of 3mn, -5mn, 8mn and – 4mn is (i) mn (ii) – mn (iii) 2 mn (iv) 3 mn

Answer»

(iii) 2 mn

= 3 mn + 8mn – 5 mn – 4 mn = 11 mn – 9 mn 

= 2 mn

39.

Subtract: (i) 4k from 12k (ii) 15q from 25q (iii) 7xyz from 17xyz

Answer»

(i) 4k from 12k

12k – 4k = (12 – 4)k = 8k

(ii) 15q from 25q

25q – 15q = (25 – 15)q = 10q

(iii) 7xyz from 17xyz

17xyz – 7xyz = (17 – 7)xyz = 10xyz

40.

Evaluate the following, using suitable identity.(i) 512(ii) 1032(iii) 9982(iv) 472

Answer»

(i) 512

= (50 + 1)2

Taking a = 50 and b = 1 we get

(a + b)2 = a2 + 2ab + b2

(50 + 1)2 = 502 + 2 (50) (1) + 12 

= 2500 + 100 + 1

512 = 2601

(ii) 1032

1032 = (100 + 3)2

Taking a = 100 and b = 3

(a + b)2 = a2 + 2ab + b2 becomes

(100 + 3)2 = 1002 + 2 (100) (3) + 32 

= 10000 + 600 + 9

1032 = 10609

(iii) 9982

9982 = (1000 – 2)2

Taking a = 1000 and b = 2

(a – b)2 = a2 + 2ab + b2 becomes

(1000 – 2)2 = 10002 – 2 (1000) (2) + 22

= 1000000 – 4000 + 4

9982 = 10,04,004

(iv) 472

472 = (50 – 3)2

Taking a = 50 and b = 3

(a – b)2 = a2 – 2ab + b2 becomes

(50 – 3)2 = 502 – 2 (50) (3) + 32

= 2500 – 300 + 9 = 2200 + 9

472 = 2209

41.

Subtract – 3ab – 8 from 3ab – 8. Also subtract 3ab + 8 from -3ab – 8.

Answer»

Subtracting -3ab – 8 from 3ab + 8 

= 3ab + 8 – (-3ab – 8) = 3ab + 8 + (3ab + 8) 

= 3ab + 8 + 3ab + 8 = (3 + 3) ab + (8 + 8) 

= 6ab + 16 

Also subtracting 3ab + 8 from – 3ab – 8 

= – 3ab – 8 – (3ab + 8) = – 3ab – 8 + (-3ab – 8) 

= – 3ab – 8 – 3ab – 8 

= [(-3) + (- 3)]ab + [(-8) + (-8)] = – 6ab + (- 16) 

= -6ab – 16

42.

In an expression, we can add or subtract only ___(i) like terms (ii) unlike terms(iii) all terms (iv) none of the above

Answer»

(i) like terms

43.

The numerical co-efficient of -7 mn is(i) 7(ii) -7(iii) p(iv) -p

Answer»

Answer is (ii) -7

44.

Find the expression to be added with 5a – 3b – 2c to get a – 4b – 2c?

Answer»

To get the required expression we must subtract

5a – 3b + 2c from a – 4b – 2c. 

∴ a – 4b – 2c – (5a – 3b + 2c) = a – 4b – 2c + (- 5a + 3b – 2c) 

= a – 4b – 2c – 5a + 3b - 2c 

= (1 – 5) a + (- 4 + 3) b + (- 2 – 2) c 

= – 4a – b – 4c. 

∴ -4a – b – 4c must be added.

45.

How much smaller is 2ab + 4b – c than 5ab – 3b + 2c.

Answer»

To find the answer we have to find the difference. 

Here greater number 5ab – 3ab + 2c. 

∴ Difference = 5ab – 3b + 2c – (2ab + 4b – c) 

= 5ab – 3b + 2c + (- 2ab - 4b + c) 

= 5ab – 3b + 2c – 2ab – 4b + c 

= (5 – 2)ab + (-3 – 4)b + (2 + 1)c = 3ab + (-7)b + 3c 

= 3ab – 7b + 3c 

It is 3ab – 7b + 3c smaller.

46.

If A = 2a2 – 4b – 1; B = 5a2 + 3b – 8 and C = 2a2 – 9b + 3 then find the value of A – B + C.

Answer»

Given A = 2a2 – 4b – 1; B = 5a2 + 3b – 8; C = 2a2 – 9b + 3

A – B + C = (2a2 – 4b – 1) – (5a2 + 3b – 8) + (2a2 – 9b + 3)

= 2a2 – 4b – 1 + (-5a2 – 3b + 8) + 2a2 – 9b + 3

= 2a2 – 4b – 1 – 5a2 – 3b + 8 + 2a2 – 9b + 3

= 2a2 – 5a2 + 2a2 – 4b – 3b – 9b – 1 + 8 + 3

= (2 – 5 + 2)a2 + (-4 – 3 – 9)6 + (-1 + 8 + 3)

= -a2 – 16b + 10

47.

Find the degree of the following polynomials.(i) x5 – x4 + 3(ii) 2 – y5 – y3 + 2y8(iii) 2(iv) 5x3 + 4x2 + 7x(v) 4xy + 7x2y + 3xy3

Answer»

(i) x5 – x4 + 3

The terms of the given expression are x5, -x4, 3.

Degree of each of the terms : 5, 4, 0

Term with highest degree: x5

Therefore degree of the expression in 5.

(ii) 2 – y5 – y3 + 2y8

The terms of the given expression are 2, -y5 ,-y3, 2y8.

Degree of each of the terms : 0, 2, 3, 8.

Term with highest degree: 2y8

Therefore degree of the expression in 8.

(iii) 2

Degree of the constant term is 0.

∴ Degree of 2 is 0.

(iv) 5x+ 4x2 + 7x

The terms of the given expression are 5x3, 4x2, 7x

Degree of each of the terms : 3, 2, 1

Term with highest degree: 5x3

Therefore degree of the expression in 3.

(v) 4xy + 7x2y + 3xy3

The terms of the given expression are 4xy, 7x2y, 3xy3

Degree of each of the terms : 2, 3, 4

Term with highest degree: 3xy3

Therefore degree of the expression in 4.

48.

Choose the pair of like terms(i) 7p, 7x(ii) 7r, 7x(iii) – 4x, 4(iv) – 4x, 7x

Answer»

(iv) -4x, 7x

49.

Try to construct algebraic equation for the verbal statement.Perimeter of a square with side a is 16 cm.

Answer»

Perimeter of a square with side a is 16 cm. 

4 x a = 16

50.

Identify the like terms among the following 7x, 5y, -8x, 12y, 6z, z, -12x, -9y, 11 z

Answer»
x - termsy-termsz-terms
7x5y6x
-8x12yz
-12x-9y11z