Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Add and find the degree of the following expressions.(i) (9x + 3y) and (10x – 9y)(ii) (k2 – 25k + 46) and (23 – 2k2 + 21 k)(iii) (3m2n + 4pq2) and (5nm2 – 2q2p)

Answer»

(i) (9x + 3y) and (10x – 9y) 

This can be written as (9x + 3y) + (10x – 9y) 

Grouping the like terms, we get 

(9x + 10x) + (3y – 9y) = x(9 + 10) + y(3 – 0) 

= 19x + y(-6) 

= 19x – 6y 

Thus degree of the expression is 1.

(ii) (k2 – 25k + 46) and (23 – 2k2 + 21k)

This can be written as (k2 – 25k + 46) + (23 – 2k2 + 21k)

Grouping the like terms, we get

(k2 – 2k2) + (-25 k + 21 k) + (46 + 23)

= k2(1 – 2) + k(-25 + 21) + 69 

= – 1k2 – 4k + 69

Thus degree of the expression is 2.

(iii) (3m2n + 4pq2) and (5nm2 – 2q2p)

This can be written as (3m2n + 4pq2) + (5nm2 – 2q2p)

Grouping the like terms, we get

(3m2n + 5m2n) + (4pq2 – 2pq2)

= m2n(3 + 5) + pq2(4 – 2) 

= 8m2n + 2pq2

Thus degree of the expression is 3.

52.

Add: (i) 8x, 3x (ii) 7mn, 5mn (iii) -9y, 11y, 2y

Answer»

(i) 8x + 3x = (8 + 3)x = 11x 

(ii) 7mn + 5mn = (7 + 5)mn = 12mn 

(iii) -9y + 11y + 2y = (-9 + 11 + 2 )y = (2 + 2)y = 4y

53.

Using identity, find the value of(i) (4.9)2(ii) (100.1)2(iii) (1.9) x (2.1)

Answer»

(i) (4.9)2

(4.9)2 = (5 – 0.1)2

Substituting a = 5 and b = 0.1 in

(a – b)2 = a2 – 2ab + b2, we have

(5 – 0.1)2 = 52 – 2(5) (0.1) + (0.1)2

(4.9)2 = 25 – 1 + 0.01 

= 24 + 0.01

(4.9)2 = 24.01

(ii) (100.1)2

(100.1)2 = (100 + 0.1)2

Substituting a = 100 and b = 0.1 in

(a + b)2 = a2 + 2ab + b2, we have

(100 + 0.1)2 = (100)2 + 2(100) (0.1) + (0.1)2

(100.1)2 = 10000 + 20 + 0.01

(100.1)2 = 10020.01

(iii) (1.9) x (2.1)

(1.9) x (2.1) = (2 – 0.1) x (2 + 0.1)

Substituting a = 100 and b = 0.1 in

(a – b) (a + b) = a2 – b2 we have

(2 – 0.1) (2 + 0.1) = 22 – (0.1)2

(1.9) x (2.1) = 4 – 0.01

(1.9) (2.1) = 3.99

54.

The cost of one pen is Rs 8 and it is available in a sealed pack of 10 pens. If Swetha has only Rs 500, how many packs of pens can she buy at the maximum? (i) 10 (ii) 5 (iii) 6 (iv) 8

Answer»

(iii) 6

Price of 1 pen = Rs 8 

Price of 1 pack = 10 x 8 = 80 

Number of packs Swetha can buy = x

80x ≤ 500 

8x ≤ 50 

x ≤ \(\frac{50}{8}\) = 6.25 

x is a natural number x = 1, 2, 3, 4, 5, 6

55.

Complete the following table.S. No.Verbal statementAlgebraic expression1.12 more than x2.m - 73.2p + 14.Twice the sum of y and z.5.2k - 36.5 is reduced from the product of x and y

Answer»
S. No.Verbal statementAlgebraic expression
1.12 more than xx + 12
2.7 is reduced from m m - 7
3.one more than twice the value of p2p + 1
4.Twice the sum of y and z.2(y + z)
5.3 is reduced from twice the value of k2k - 3
6.5 is reduced from the product of x and yxy - 5
56.

Say True or False:(i) 5x3y ÷ 4x2 = 2xy(ii) 7ab2 ÷ 14ab = 2b2

Answer»

(i) True

(ii) False

57.

An algebraic statement which is equivalent to the verbal statement “Three times the sum of ‘x’ and ‘y’ is (i) 3(x + y) (ii) 3 + x + y (iii) 3x + y(iv) 3 + xy

Answer»

(i) 3[(x + y)]

58.

Subtract 5a2 – 7ab + 5b2 from 3ab – 2a2 – 2b2 and find the degree of the expression

Answer»

We have (3ab – 2a2 – 2b2) – (5a2 – 7ab + 5b2)

= 3ab – 2a2 – 2b2 – 5a2 + 7ab – 5b2

= (3ab + 7ab) + (- 2 – 5)a2 + (- 2 – 5)b2

= 10 ab + (-7)a2 + (-7)b2

= 10ab – 7a2 – 7b2

Degree of the expression is 2.

59.

Say True or False (i) Every algebraic expression is an equation. (ii) The expression 7x + 1 cannot be reduced without knowing the value of x. (iii) To add two like terms, its coefficients can be added.

Answer»

(i) False 

(ii) True 

(iii) True

60.

Find the GCD for the following:(i) ab2c3, a2b3c, a3bc2 (ii) 35x5y3z4, 49x2yz3, 14xy2z2(iii) 25 ab3c, 100 a2bc, 125 ab (iv) 3abc, 5xyz, 7pqr

Answer»

(i) ab2c3, a2b3c, a3bc2 

ab2c3 = a x b x b x c x c x c 

a2b3c = a x a x b x b x b x c 

a3bc2 = a x a x a x b x c x c 

G.C.D. of ab2c3, a2b3c, a3bc2 = a x b x c = abc

(ii) 35x5y3z4, 49x2yz3, 14xy2z2 

35x5y3z4 = 5 x 7 x5 y3 z4 

49x2yz3 = 7 x 7 x2 y z3 

14xy2 z2 = 2 x 7 x y2 z2 

G.C.D. is = 7 x y z2

(iii) 25 ab3 c, 100 a2 bc, 125 ab 

25 ab3 c = 5 x 5 ab3

100 a2 bc = 2 x 5 x 2 x 5 a2 b c 

125 ab = 5 x 5 x 5 ab 

G.C.D is = 5 x 5 ab = 25ab

(iv) 3abc, 5xyz, 7pqr 

3abc = 1 x 3 a bc 

5xyz = 1 x 5 x y z 

7pqr = 1 x 7 p q r 

G.C.D is 1

61.

The value of 7a – 4b when a = 3, b = 2 is (i) 21 (ii) 13 (iii) 8 (iv) 32

Answer»

(ii) 13 

7(3) – 4(2) = 21 – 8 = 13

62.

State whether a given pair of terms in like or unlike terms.(i) 1, 100(ii) -7x, \(\frac{5}{2}\)x(iii) 4m2p, 4mp2(iv) 12xz, 12x2z2

Answer»

(i) 1, 100 is a pair of like terms. [∵ 1 = x0 and 100 = 100 x0]

(ii) -7x, \(\frac{5}{2}\)x is a pair of like terms.

(iii) 4m2p, Amp is a pair of unlike terms.

(iv) 12xz, 12x2z2 is a pair of unlike terms.

63.

Express the following as the product of its factors.(i) 24 ab2c2(ii) 36 x3y2z(iii) 56 mn2p2

Answer»

(i) 24 ab2c2 = 2 x 2 x 2 x 3 x a x b x b x c x c

(ii) 36 x3y2z = 2 x 2 x 3 x 3 (x) x (x) x (x) x (x) y (x) y (x) z

(iii) 56 mn2p2 = 2 x 2 x 2 x 7 x m x n x n x p x p

64.

Fill in the blanks.1. (p – q)2 = __2. The product of (x + 5) and (x – 5) is __3. The factors of x2 – 4x + 4 are __4. Express 24ab2c2 as product of its factors is __

Answer»

1. p2 – 2pq + q2

2. x2 – 25

3. (x – 2) and (x – 2)

4. 2 x 2 x 2 x 3 x a x b x b x c x c

65.

Say True or False (i) The expressions 8x + 3y and 7x + 2y cannot be added (ii) If x is a natural number, then x + 1 is its predecessor. (iii) Sum of a – b + c and -a + b – c is zero

Answer»

(i) False

(ii) False 

(iii) True

66.

The solution of the inequation 5x + 5 ≤ 15 are (where x is a natural number) (i) 1 and 2 (ii) 0, 1 and 2 (iii) 2, 1, 0, -1, -2 (iv) 1, 2, 3...

Answer»

(i) 1 and 2

5x + 5 ≤ 15

5x ≤ 15 – 5 = 10 

x ≤ \(\frac{10}{2}\) = 2

67.

The inequation that is represented on the number line as shown below is __.(i) -4 < x < 0(ii) -4 ≤ x ≤ 0 (iii) -4 < x ≤ 0 (iv) -4 ≤ x < 0 (v) -4 ≤ x ≤ 2

Answer»

(v) -4 ≤ x ≤ 2

68.

Say whether the following statements are True or False.(i) (7x + 3)(7x – 4) = 49x2 – 7x – 12(ii) (a – 1)2 = a2 – 1.(iii) (x2 + y2)(y2 + x2) = (x2 + y2)2(iv) 2p is the factor of 8pq.

Answer»

(i) True

(ii) False

(iii) True

(iv) True

69.

Say True or False.(i) The degree of m2n and mn2 are equal.(ii) 7a2b and -7ab2 are like terms.(iii) The degree of the expression -4x2yz is -4(iv) Any integer can be the degree of the expression.

Answer»

(i) True

(ii) False

(iii) False

(iv) True

70.

Try to construct algebraic equation for the verbal statement.One third of a number plus 6 to 10.

Answer»

\(\frac{1}{3}\) + 6 = 10

71.

Say True or False. (i) Linear inequation has almost one solution. (ii) When x is an integer, the solution set for x < 0 are -1, -2,..(iii) An inequation, -3 < x < -1, where x is an integer, cannot be represented in the number line. (iv) x < -y can be rewritten as – y < x.

Answer»

(i) False

(ii) False

(iii) True

(iv) False

72.

Can we factorize the following expressions using any basic identities? Justify your answer.(i) x2 + 5x + 4(ii) x2 – 5x + 4

Answer»

(i) x2 + 5x + 4 = x2 + (1 + 4)x + (1 x 4)

Which is of the form x2 + (a + b)x + ab

= (x + a) (x + b)

x2 + (1 + 4)x + (1 x 4) = (x + 1) (x + 4)

∴ x2 + 5x + 4 = (x + 1) (x + 4)

(ii) x2 – 5x + 4 = x2 + ((-1) + (- 4))x + (-1) (- 4)

Which is of the form x2 + (a + b)x + ab

= (x + a) (x + b)

x2 + ((-1) + 4))x + ((-1)(-4)) = (x + (-4)) 

= (x – 1) (x – 4)

x2 – 5x + 4 = (x – 1) (x – 4)

73.

Hameed saw a stranger in the street. He told his parent, “The stranger’s age is between 40 to 45 years, and his height is between 160 to 170 cm” Convert the above verbal statement into algebraic inequations by using x and y as variables of age and height.

Answer»

Let x be the age and y be the height then 

40 ≤ x ≤ 45 and 160 ≤ y ≤ 170

74.

Construct inequations for the following statements: 1. Ramesh’s salary is more than Rs 25,000 per month. 2. This lift can carry maximum of 5 persons. 3. The exhibition will be there in town for at least 100 days.

Answer»

1. x > 25,000, where x is Ramesh’s salary per month. 

2. y ≤ 5, where y is the maximum number of persons the left can carry. 

3. z ≥ 100, where z is the number of days when the exhibition is there.

75.

Radha is drawing a dot Rangoli ( a beautiful pattern of lines joining dots with chalk powder, she has 9 dots in a row. How many dots will her Rangoli have for r rows? How many dots are there if there are 8 rows? if there are 10 rows?

Answer»

Number of dots in 1 row = 9

Number of rows = r

Total number of dots in r rows = Number of rows × number of dots in a row

= 9r

Number of dots in 8 rows = 8 × 9 = 72

Number of dots in 10 rows = 10 × 9 = 90

76.

Mother has made laddus. She gives some laddus to guests and family members; still 5 laddus remain, if the number of laddus mother gave away is l, how many laddus did she make?

Answer»

Number of laddus given away = 1

Number of laddus remaining = 5

Total number of laddus = Number of laddus given away + numbers of laddus remaining

= 1 + 5

77.

Tree plantation program was held in a school. 4 Trees were planted in each row. Write the number of trees planted in terms of the number of rows.

Answer»

Number of trees in one row = 4 

Let total number of rows = x 

∴ Total number of trees in x rows = 4 × x = 4x.

78.

Ranu is 5 years younger than leela. (i) Let Leela’s age be years. Write the age of Ranu in terms of. (ii) Let Ranu’s age of be P years. Write the age of Leela in terms of P.

Answer»

(i) Leela’s age in x years. 

∵ Ranu is 5 years younger than Leela. 

∴ Ranu’s age = (x – 5) years. 

(ii) Ranu’s age is P years. 

∵ Leela’s is 5 years older than Ranu. 

∴ Leela’s age = (P + 5) years.

79.

Leela is Radha’s younger sister. Leela is 4 years younger than Radha. can you write Leele’s age in terms of Radha’s age? Take Radha’s age to be x years.

Answer»

Let Radha’s age be x years

Leele’s age = Radha’s age – 4

= (x – 4) years.

80.

Multiply:(5x2 + 7x – 3) by 4x2

Answer»

(5x2 + 7x – 3) × 4x2

= 4x2(5x2 + 7x – 3) Multiplication is commutative

= 4x2 (5x2 + 4x2 (7x) + 4x2 (-3)

= (4 × 5)(x2 × x2) + (4 × 7)(x2 × x) + (4 × -3)(x2)

= 20x4 + 28x3 – 12x2

81.

Find the missing term: y2 + (-) x + 56 = (y + 7)(y + -)

Answer»

We have (x + a) (x + b) = x2 + (a + b)x + ab

56 = 7 × 8 .

∴ y2 + (7 + 8)x + 56 = (y + 7)(y + 8)

82.

Solve the following inequalities.(i) 4n + 7 ≥ 3n + 10, n is an integer(ii) 6(x + 6) ≥ 5(x – 3), x is a whole number.(iii) -13 ≤ 5x + 2 ≤ 32, x is an integer.

Answer»

(i) 4n + 7 ≥ 3n + 10, n is an integer.

4n + 7 – 3n ≥ 3n + 10 – 3n

n(4 – 3) + 7 ≥ 3n + 10 – 3n

n(4 – 3) + 7 ≥ n (3 – 3) + 10

n + 7 ≥ 10

Subtracting 7 on both sides

n + 7 – 7 ≥ 10 – 7

n ≥ 3

Since the solution is an integer and is greater than or equal to 3, the solution will be 3,

4, 5, 6, 7, …

n = 3, 4, 5, 6,7, …

(ii) 6(x + 6) ≥ 5(x – 3), x is a whole number.

6x + 36 ≥ 5x – 15

Subtracting 5x on both sides

6x + 36 – 5x ≥ 5x – 15 – 5x

x (6 – 5) + 36 ≥ x(5 – 5) – 15

x + 36 ≥ -15

Subtracting 36 on both sides

x + 36 – 36 ≥ -15 -36

x ≥ -51

The solution is a whole number and which is greater than or equal to -51

∴ The solution is 0, 1, 2, 3, 4,…

x = 0,1,2, 3,4,…

(iii) -13 ≤ 5x + 2 ≤ 32, x is an integer.

Subtracting throughout by 2

-13 – 2 ≤ 5x + 2 – 2 ≤ 32 – 2

-15 ≤ 5x ≤ 30

Dividing throughout by 5

\(\frac{-15}{5}\) ≤ \(\frac{5x}{5}\) ≤ \(\frac{30}{5}\)

– 3 ≤ x ≤ 6

∴ Since the solution is an integer between -3 and 6 both inclusive, we have the solution

As -3, -2, -1,0, 1,2, 3, 4, 5, 6.

i.e. x = -3, -2, 0, 1, 2, 3,4, 5 and 6.

83.

The number of permutation of n different things taken r at a time, when the repetition is allowed is: (a) rn (b) nr (c) \(\frac{n!}{(n-r)!}\)(d) \(\frac{n!}{(n+r)!}\)

Answer»

Answer is (b) nr 

84.

Let P and Q be `3xx3`matrices with `P!=Q`. If `P^3=""Q^3a n d""P^2Q""=""Q^2P`, then determinant of `(P^2+""Q^2)`is equal to(1) `2`(2) 1 (3)0 (4) `1`

Answer» Correct Answer - A
85.

Expand the following : (i) (2x + 3y + 4z)2 (ii) (-p + 2q + 3r)2(iii) (2p + 3)(2p – 4)(2p – 5) (iv) (3a + 1)(3a – 2)(3a + 4)

Answer»

(i) (2x + 3y + 4z)2 

(a + b + c)2 ≡ a2 + b2 + c2 + 2ab + 2bc + 2ca 

∴ (2x + 3y + 4z)2 = (2x)2 + (3y)2 + (4z)2 + 2(2x) 

(3y) + 2(3y) (4z) + 2(4z) (2x) 

= 4x2 + 9y2 + 16z2 + 12xy + 24yz + 16zx

(ii) (-p + 2q + 3r)2 

(a + b + c)2 ≡ a+ b2 + c2 + 2ab + 2bc + 2ca 

(-p + 2q + 3r)2 = (-p)2 + (2q)2 + (3r)2 + 2(-p) (2q) + 2(2q) (3r) + 2(-p) (3r) 

= p2 + 4q2 + 9r– 4pq +12qr – 6rp

(iii) (2p + 3)(2p – 4)(2p – 5) 

(x + a) (x + b) (x + c) ≡ x3 + (a + b + c)x2 + (ab + be + ca) x + abc 

(2p + 3)(2p – 4)(2p – 5) = (2p)3 + (3 – 4 – 5) (2p)2 + [(3 x – 4)2 + (-4 x -5) + (-5 x 3)] 2p + 3 x – 4 x – 5 

= 8p3 + (-6) (4p2) + [-12 + 20 + (-15)] 2p + 60 

= 8p3 – 24p2 + (-7)2p + 60 

(2p + 3)(2p – 4)(2p – 5) = 8p3 – 24p2 – 14p + 60

(iv) (3a + 1)(3a – 2)(3a + 4) 

(x + a) (x + b) (x + c) ≡ x3 + (a + b + c)x2 + (ab + bc + ca)x + abc 

(3a + 1)(3a – 2)(3a + 4) = (3a)3 + (1 – 2 + 4) (3a)2 + [1 x (- 2) + (-2 x 4) + 4 x 1] (3a) + 1 x -2 x 4 

= 27a3 + 3 (9a2) + (-2 – 8 + 4)3a – 8 

= 27a3 + 27a2 – 8a – 8

86.

If a, b are real then show that the roots of the equation (a – b)x2 – 6(a + b)x – 9(a – b) = 0 are real and unequal.

Answer»

(a – b)x2 – 6(a + b)x – 9(a – b) = 0 

Here a = a – b; b = – 6(a + b); c = – 9(a – b) 

∆ = b2 – 4ac 

= [- 6(a + b)]2 – 4(a – b)[-9(a – b)] 

= 36(a + b)2 + 36(a – b)(a – b) 

= 36 (a + b)2 + 36 (a – b)2 

= 36 [(a + b)2 + (a – b)2]

The value is always greater than 0 

∆ = 36 [(a + b)2 + (a – b)2] > 0 

∴ The roots are real and unequal.

87.

If -4 is a root of the equationx2 + px – 4 = 0 and if the equationx2 + px + q = 0 has equal roots, find the values of p and q.

Answer»

Let p(x) = x2 + px – 4

– 4 is the root of the equation

P(-4) = 0

16 – 4p – 4 = 0

-4p + 12 = 0

-4p = -12

p = 12/4 = 3

The equation x2 + px + q = 0 has equal roots

x2 + 3 x + q = 0

Here a = 1, b = 3, c = q

Since the roots are real and equal

b2 – 4 ac = 0

32 – 4(1)(q) = 0

9 – 4q = 0

9 = 4q

q = 9/4

The value of p = 3 and q = 9/4

88.

If the roots of (a – b)x2 + (b – c)x + (c – a) = 0 are real and equal, then prove that b, a, c are in arithmetic progression.

Answer»

(a – b)x2 + (b – c)x + (c – a) = 0 

A = (a – b), B = (b – c), C = (c – a) 

Δ = b2 – 4ac = 0 

⇒ (b – c)2 – 4(a – b)(c – a) 

⇒ b2 – 2bc + c2 - 4 (ac – bc – a2 + ab) 

⇒ b2 – 2bc + c2 – 4ac + 4bc + 4a2 – 4ab = 0 

⇒ 4a2 + b2 + c2 + 2bc – 4ac – 4ab = 0 

⇒- (-2a + b + c)2 = 0 [∵ (a + b + c) = a+ b2 + c+ 2ab + 2bc + 2ca)] 

⇒ 2a + b + c = 0 

⇒ 2 a = b + c 

∴ a, b, c are in A.P.

89.

A bus travels at v km per hour. It is going from Daspur to Beespur, After the bus travelled 5 hours, Beespur is still 20 km away. What is the distance from Daspur to Beespur? Express it using v.

Answer»

Speed = vkm/hr

Distance travelled in 5hrs = 5 × v = 5v km

Total distance between Daspur and Beespur 

= (5v + 20) km

90.

Simplify : `8m-[3m-{3m-{2m+3-2(4m-4)}]`

Answer» `[3m-{2m+3-2(4m-4)}]`
`=8m-[3m-{(2-8)m+(3+8}]`
`8m-[3m-{-6m+11m}]`
`=8m-[3m+6m-11]`
`=8m-[9m-11]`
=8m-9m+11=11-m
91.

Expand(i) (3m + 5)2(ii) (5p – 1)2(iii) (2n – 1)(2n + 3)(iv) 4p2 – 25q2

Answer»

(i) (3m + 5)2

Comparing (3m + 5)2 with (a + b)2 we have a = 3m and b = 5

(a + b)2 = a2 + 2 ab + b2

(3m + 5)2 = (3m)2 + 2 (3m) (5) + 52

= 32m2 + 30m + 25 

= 9m2 + 30m +25

(ii) (5p – 1)2

Comparing (5p – 1)2 with (a – b)2 we have a = 5p and b = 1

(a – b)2 = a2 – 2ab + b2

(5p – 1)2 = (5p)2 – 2 (5p) (1) + 12

= 52p2 – 10p + 1 = 25p2 – 10p + 1

(iii) (2n – 1)(2n + 3)

Comparing (2n – 1) (2n + 3) with (x + a) (x + b) we have a = -1; b = 3

(x + a) (x + b) = x2 + (a + b)x + ab

(2n +(- 1)) (2n + 3) 

= (2n)2 + (-1 + 3)2n + (-1) (3)

= 22n2 + 2 (2n) – 3 = 4n2 + 4n – 3

(iv) 4p2 – 25q2 = (2p)2 – (5q)2

Comparing (2p)2 – (5q)2 with a2 – b2 we have a = 2p and b = 5q

(a2 – b2) = (a + b)(a – b) 

= (2p + 5q) (2p – 5q)

92.

Simplify: `2/3m-4/5n+3/5p+(-3/4m-5/2n+2/3p)+(5/2m+3/4p-5/6n)`

Answer» `2/3m-3/4m+5/2m-4/5n-5/2n-5/6n+3/5p+2/3p+3/4p`
`(8m-9m+30m)/12+(-24n-75n-25n)/30+(336p+40p+45p)/60`
`229/12m-124/30n+121/60p`
`(149m-248n+121p)/60`.
93.

If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements?

Answer»

1 x 18, 2 x 9, 3 x 6, 6 x 3, 9 x 2, 18 x 1 and 1 x 6, 2 x 3, 3 x 2, 6 x 1

94.

Find the least common multiple of xy (k2 + 1) + k(x2 + y2) and xy(k2 – 1) + k (x2 – y2)

Answer»

xy (k2 + 1) + k(x2 + y2) = k2 xy + xy + kx2 + ky2

= (k2 xy + kx2) + (ky2 + xy)

= kx(ky + x) + y (ky + x)

= (ky + x) (kx + y)

xy (k2 – 1) + k(x2 – y2) = k2 xy – xy + kx2 – ky2

= (k2xy + kx2) – xy – ky2

= kx(ky + x) -y (ky + x)

= (ky + x) (kx – y)

L.C.M. = (ky + x) (kx + y) (kx – y)

= (ky + x) (k2 x2 – y2)

The least common multiple is (ky + x) (k2 x2 – y2)

95.

In a three-digit number, when the tens and the hundreds digit are interchanged the new number is 54 more than three times the original number. If 198 is added to the number, the digits are reversed. The tens digit exceeds the hundreds digit by twice as that of the tens digit exceeds the unit digit. Find the original number.

Answer»

Let the three digits numbers be 100a + 10b + c.

100b + 10a + c = 3(100a + 10b + c) + 54 … (1)

100a + 106 + c + 198 = 100c + 106 + a … (2)

(b – a) = 2(b – c) … (3)

(1) ⇒ 100b + 10a + c = 300a + 30b + 3c + 54

⇒ 290a – 70b + 2c = -54

(2) ⇒ 99a – 99c = -198 ⇒ a – c = -2

⇒ a = c – 2

(3) ⇒ a + b – 2c = 0 ⇒ a + b = 2c

⇒ b = 2c – c + 2

⇒ b = c + 2

Substituting a, b in (1)

290(c – 2) – 70 (c + 2) + 2c = -54

290c – 580 – 70c – 140 + 2c = -54

222c = 666 ⇒ c = 3

a = 1, 6 = 5

∴ The number is 153.

96.

Find two consecutive natural numbers whose product is 20.

Answer»

Let a natural number be x.

The next number = x + 1

x (x + 1) = 20

x2 + x – 20 = 0

(x + 5)(x – 4) = 0

x = -5, 4

∴ x = 4 (∵ x ≠ -5, x is natural number)

The next number = 4 + 1 = 5

Two consecutive numbers are 4, 5

97.

Find the LCM and GCD for the following and verify that f(x) x g(x) = LCM x GCD. (i) 21x2y, 35xy2 (ii) (x3 – 1)(x + 1), x3 + 1 (iii) (x3 – 1) (x + 1), (x3 – 1) (iv) (x2 y + xy2), (x2 + xy)

Answer»

(i) f(x) = 21x2 y = 3 x 7x2

g(x) = 35xy2 = 7 x 5xy2 

G.C.D. = 7xy 

L.C.M. = 7 x 3 x 5 x x2 y2 = 105x2 x y2 

L.C.M x G.C.D = f(x) x g(x) 

105x2 y2 x 7xy = 21x2 y x 35xy2 

735x3 y3 = 735x3 y3 

Hence verified.

(ii) (x3 – 1)(x + 1) = (x – 1)(x2 + x + 1)(x + 1) 

x3 + 1 = (x + 1) (x2 – x + 1) 

G.C.D = (x + 1)

L.C.M = (x – 1)(x + 1)(x2 + x + 1)(x2 – x + 1) 

∴ L.C.M. x G.C.D = f(x) x g(x) 

(x – 1)(x + 1)(x2 + x + 1) (x2 – x + 1) = (x – 1) 

(x2 + x + 1) x (x + 1) (x2 – x + 1) 

(x3 – 1)(x + 1)(x3 + 1) = (x3 – 1)(x + 1)(x3 + 1) 

∴ Hence verified.

(iii) f(x) = x2 y + xy2 = xy(x + y) 

g(x) = x2 + xy = x(x + y) 

L.C.M. = x y (x + y) 

G.C.D. = x (x + y) 

To verify: L.C.M. x G.C.D. = xy(x + y) x (x + y) 

= x2 y (x + y)2 … (1) 

f(x) x g (x) = (x2 y + xy2)(x2 + xy) 

= x2 y (x + y)2 … (2) 

∴ L.C.M. x G.C.D = f(x) x g{x). 

Hence verified.

98.

Which of the following should be added to make x4 + 64 a perfect square …(1) 4x2(2) 16x2(3) 8x2(4) -8x2

Answer»

(2) 16x2

x2 + 64 = (x2)2 + 82 – 2 x (x2) x 8

= (x2 – 8)2

2 x (x2) x 8 must be added

i.e, 16x2 must be added

99.

Write the corresponding expressions.Omar helps his mother 1 hour more than his sister does.

Answer»

Let Omar’s sister helps her mother for x hours.

∴ Omar helps his mother for (x + 1) hours.

100.

Solve for `x:(2x)/(3)-(x)/(2)+2x`

Answer» Correct Answer - `(12)/(5)`
`(2x)/(3)-(x)/(2)+2=x`
`(2x)/(3)-(x)/(2)=2`
`(4x-3x-6x)/(6)=-2`
`(4x-9x)/(6)=-2`
`(-5x)/(6)=-2`
`x=(2xx6)/(5)`
`=x(12)/(5)`