InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
If the sum of the coefficients in the expansion of `(b + c)^(20) {1 +(a -2) x}^(20)` is equal to square of the sum of the coefficients in the expansion of `[2 bcx - (b + c)y]^(10)`, where a, b, c are positive constants, thenA. ` ge sqrt((a c)`B. `(b +c)/(2) ge a`C. c, a and b are in G. PD. `(1)/(c),(1)/(a),(1)/(b)` are in H.P |
|
Answer» Correct Answer - b The sum of the coefficients in the expansion of `(b + c )^(20){1 + (a - 2)x}^(20)` is given by `S_(1) = ( b + c)^(20) (a - 1)^(20)` [ Putting x = 1] The sum of the coefficients in the expansion of `[2 bcx - (b + c)y]^(10)` is given by `S_(2) = [ 2 bc - (b + c)]^(10)` [ Putting x = y = 1]` If is given that `S_(1) = S_(2)""^(2)` `rArr (b + c)^(20) (a -1)^(20) = (2bc - b - c )^(20)` `rArr (b + c ) (a -1) - =2bc - b - c` `rArr a - 1 = (2bc)/(b +c) - 1` `rArr a= (2 bc)/(b+c)` `rArr a ` is the H.M of of b and c. But, `(b +c)/(2)` is the A. M. of b and c. Therefore, A. M. `ge` H.M.`rArr (b+c)/(2) ge a` . |
|
| 102. |
If the second term of the expansion `[a^(1/(13))+a/(sqrt(a^(-1)))]^n`is `14 a^(5//2)`, then the value of `(^n C_3)/(^n C_2)`is.A. 4B. 3C. 12D. 6 |
|
Answer» Correct Answer - a We have, s`""^(n)C_(r) (root(13)(a))^(a-1) ((a)/(sqrt(a^(-1))))^(1) = 14 a^(5//2)` `rArr na^((n+1)/(13)+(3)/(2)) = 14 a^(5//2) rArr n=14` `therefore (""^(n)C_(3))/(""^(n)C_(2))=(n-2)/(3) = (14-2)/(3) = 4 [because (""^(n)C_(3))/(""^(n)C_(2))=(n-r+1)/(r)]` s |
|
| 103. |
The coefficients of `x^(13)` in the expansion of ` (1 - x)^(5) (1 + x + x^(2) + x^(3) )^(4)` , isA. 4B. -4C. 9D. none of these |
|
Answer» Correct Answer - a We have, `(1- x)^(5) (1 + x + x^(2) + x^(3) )^(4)` `= (1 x)^(5) (1 | x)^(4) (1 | x^(2))^(4)` ` = (1 - x) (1 - x^(2))^(4) (1 + x^(2))^(4)` ` = (1 -x )(1 - x^(4))^(4)` ` = (1 - x) (""^(4)C_(0) - ""^(4)C_(1)x^(4) + ""^(4)C_(2) x^(8) - ""^(4)C_(3)x^(12) + ""^(4)C_(4) x^(16))` `therefore ` Coefficient of ` x^(13) = ""^(4)C_(3) = 4` . |
|
| 104. |
Prove that in the expansion of `(1+x)^n(1+y)^n(1+z)^n`, the sum of the coefficients of the terms of degree `ri s^(3n)C_r`.A. `(""^(n)C_(r))^(3)`B. `3 . ""^(n)C_(r)`C. `""^(3n)C_(r)`D. `""^(n)C_(3r)` |
|
Answer» Correct Answer - c The given expansion can be written as `ubrace ({( 1+ x) (1 + x) (1 + x)...(1 +x)})_("n - factors") ubrace({( 1 +y)(1 +y) (1 +y)...(1 +y)})_("n - factors")` `ubrace({( 1 +z)(1 +z) (1 +z)...(1 +z)})_("n - factors")` There are 3n factors in this product . To get a term of degree r. we choose r factors out of these 3n factors and then multiply second terms in each factor. there are `""^(3n)C_(r)` such terms each having coefficient 1. Hence, the sum of the coefficients of `""^(3n)C_(r)`. |
|
| 105. |
In the binomial expansion of `(1+a)^(m+n)`, prove that the coefficient of `a^m a n d a^n`are equal.A. A= BB. mA = nBC. nA = mBD. A = 2B |
|
Answer» Correct Answer - a In the binomial expansion of `(1 +a)^(m+n)`, we have A = Coefficient of `a^(m) = ""^(m+n)C_(m) = ((m+n)!)/(m!n!)` and B = Coefficient of `a^(n) = ""^(m+n)C_(n) = ((m +n)!)/(m!n!)` Clearly, A = B |
|
| 106. |
The value of `{(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)}` ,isA. 58B. `58sqrt(2)`C. 42D. `42sqrt(2)` |
|
Answer» Correct Answer - b Using binomial expansion, we have `(sqrt(2) +1)^(5) + (sqrt(2)-1)^(5) = 2 {(sqrt(2))^(5) +10(sqrt(2))^(3) + 5sqrt(2)} ` `(sqrt(2) +1)^(5) + (sqrt(2)-1)^(5) = 2{4sqrt(2) +20sqrt(2) + 5sqrt(2)} = 5sqrt(2)`. |
|
| 107. |
Show that the middle term in the expansion of `(1+x)^(2n)i s((1. 3. 5 (2n-1)))/(n !)2^n x^n ,w h e r en`is a positive integer.A. `(1* 3*5…(2n -1))/(n!) 2^(n) . X^(n)`B. `(1 * 3 * 5 …(2n -1))/(n!!) `C. `""^(2n)C(n)`D. `""^(n)C_(n-1) x^(n-1)` |
|
Answer» Correct Answer - a We given expansion is `(1 +x)^(2n)` . Here , the index 2n is even So, `((2n)/(2) +1)^(th)` i.e. `(n+1)^(th)` term is the midle term `therefore ` Middle = `T_(n+1)` =` ""^(2n)C_(n) (1)^(2n-n) x^(n) = ""^(2n)C_(n) x^(n) = ((2n)!)/((2n -n)!n!) x^(n)` `=(1*2*3*4*5*6...(2n -3)(2n -2)(2n-2)(2n-1) (2n))/(n!n!)x^(n)` `=({1*3*5...(2n -3)(2n -1)}{*2*4*6...(2n-2)(2n)})/(n!n!)x^(n)` `=({1*3*5...(2n -3)(2n -1)}n!.2^(n))/(n!n!)x^(n)` `=(1*3*5...(2n -1))/(n!n!)2^(n)x^(n)`. |
|
| 108. |
The greatest integer less than or equal to `(sqrt2+1)^6` isA. 197B. 198C. 196D. 199 |
|
Answer» Correct Answer - a Let `(2sqrt(2) +1)^(6) = I + F` where I `in N and 0 lt F lt 1`. Clearly , I is the greatest integer less then or equal to `(2 sqrt(2) +1)^(6)` Let G =` (sqrt(2) -1)^(6)` . Then , `I + F + G = (sqrt(2) + 1)^(6) + (sqrt(2) -1)^(6)` `rArr I + F + G = 2 {""^(6)C_(0) (sqrt(2))^(6) + ""^(6)C_(2) (sqrt(2))^(6-2) +....}` `rArr I + F + G ` = An even integer `rArr F + G = 1` Again, `I + F + G` `2={""^(6)C_(0)(sqrt(2))^(6) + ""^(6)C_(2) (sqrt(2))^(6-2) + ""^(6)C_(4) (sqrt(2))^(6-4) + ""^(6)C_(6) (sqrt(2))^(6-6)}` `rArr I + 1 = 2 (8 + 15 xx4 + 15 xx4 + 15 xx2 +1) [because F + G = 1 ]` `rArr I = 197` |
|
| 109. |
If A and B are the coefficients of `x^n` in the expansion `(1 + x)^(2n)` and `(1 + x)^(2n-1)` respectively, thenA. A= BB. 2A = BC. A = 2BD. none of these |
|
Answer» Correct Answer - c We have, A = Coefficient of `x^(n)` in `( 1 + x)^(2n)` `rArr A = ""^(2n)C_(n)` `rArr A = (2n)/(n) ""^(2n-1)C_(n-1) = 2 ""^(2n-1)C_(n-1) [because ""^(n)C_(r) = (n)/(r) ""^(n-1)C_(n-1) ]` and B = Coefficient of `x^(n) ` in `(1 + x)^(2n-1)` `rArr B= ""^(2n -1)C_(n) = ""^(2n-1) C_(n-1) [because ""^(n)C_(r) = ""^(n)C_(n-r)]` Clearly, A = 2B. |
|
| 110. |
For a positive integer n if the mean of the binomial coefficients in the expansion of `(a + b)^(2n - 3)` is 16 Then n is equal toA. 4B. 5C. 7D. 9 |
|
Answer» Correct Answer - b The binomail ceofficients in the expansion of `(a + b)^(2n-3) are ""^(2n-3)C_(0)""^(2n-3)C_(1),...,... ""^(2n-3)C_(2n-3)`. It is given that their mean is 16 `therefore (""^(2n-3)C_(0)+""^(2n-3)C_(1) + .........+ ""^(2n-3)C_(2n-3))/(2n-2)= 16` `rArr 2^(2n-3) = 16 (2n -2)` `rArr 2^(2n-8) = 11 -1` `rArr n= 5` (By inspection) |
|
| 111. |
Show that the coefficient of the middle term in the expansion of `(1+x)^(2n)`is equal to the sum of the coefficients of two middle terms in the expansion of `(1+x)^(2n-1)`.A. A+B=CB. B+C=AC. C+A= BD. A+B +C = 0 |
|
Answer» Correct Answer - b Clearly, `(n+1)^(th)` term is the middle term in the expansion of `(1 + x)^(2n)` and its coefficients is `""^(2n)C_(n)` i.e. A = `""^(2n)C_(n)` In the expansion of `(1 +x)^(2n-1), n^(th) and (n +1)^(th)` terms are middle terms and their coefficient are `""^(2n)C_(n-1) and ""^(2n-1)C_(n)` respectively i.e. B `""^(2n-1)C_(n-1) and C = ""^(2n)C_(n)`, We have, `""^(2n-1)C_(n-1)+""^(2n-1)C_(n) = ""^((2n-1)+1)C_(n)[because ""^(n)C_(r-1) +""^(n)C_(r) = ""^(n+1)C_(r)]` `therefore B + C = A` |
|
| 112. |
The sum of the series `""^(3)C_(0)- ""^(4)C_(1) . (1)/(2) + ""^(5)C_(2)((1)/(2))^(2) - ""^(6)C_(3)((1)/(2))^(3) + ...` to `infty`, isA. 16B. 8C. `(16)/(81)`D. none of these |
|
Answer» Correct Answer - c We have, `(1 + x)^(-n) = ""^(n-1)C_(0) - ""^(n)C_(1) x + ""^(n-1)C_(2) x + ""^(n+1)C_(2) x^(2) - ""^(n+2)C_(3) x^(3) + ...` On comparing the two series, we get n-1 = 3 a d` x = (1)/(2) rArr n=4 and x = (1)/(2)` Hence, sum of the given series = `(1 + (1)/(2))^(-4)` = (16)/(81)` . |
|
| 113. |
The sum of the series `1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... ` to `infty`, isA. `sqrt(2)`B. 2C. `(1)/(sqrt(2))`D. none of these |
|
Answer» Correct Answer - a Comparing the given series with the series `(1 + x)^(n) = 1 + (x)/(1!) + (n(n-1))/(2!)x^(2) + …., ` we get `nx = (1)/(4) and (n(n-1))/(2!) x^(2) = (1.3)/(2!)((1)/(4))^(2)` `rArr nx = (1)/(4) and n^(2) x^(2) - (nx) x = (3)/(16)` `rArr (1)/(16) - (x)/(4) = (3)/(16) rArr (x)/(4) = - (1)/(8) rArr x = - (1)/(2)` ` therefore nx = (1)/(4) rArr n = - (1)/(2)` Hence, sum of the series = `(1 - (1)/(2))^(-1//2) = sqrt(2)` |
|
| 114. |
The approximate value of `(1.0002)^3000`, isA. 1.6B. 1.4C. 1.8D. 1.2 |
|
Answer» Correct Answer - a We have , ` (1 + x)^(n) cong1 + nx if x lt 1` `therefore (1 .0002)^(3000) cong1 + 3000 xx0.0002 = 1.6` |
|