Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Statement-1 `sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1)` Statement-2:` sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0`A. 1B. 2C. 3D. 4

Answer» Correct Answer - d
We have,
`sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = sum_(r=0)^(n) (-r)(n)/(r) ""^(n-1)C_(r-1) x^(r-1)x(-1)^(r-1)`
`rArr sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = -nx sum_(r=1)^(n) ""^(n-1)C_(r-1) x^(r-1)x(-1)^(r-1)`
`rArr sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = -nx (1 -x)^(n-1)` ...(i)
So, statement-1 is not true.
Replacing x by 1 in (i) , we get ` sum_(r=0)^(n) r ""^(n)C_(r)(-1)^(r) =0`
So, statement-2 is true.
52.

Statement-1 : ` sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1)`Statement-2: `sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1)` .A. 1B. 2C. 3D. 4

Answer» Correct Answer - b
We have,
` sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r)`
` = sum_(r=0)^(n) {r( r-1)+r}""^(n)C_(r)x^(r)`
`= sum_(r=0)^(n) r(r -1) ""^(n)C_(r) x^(r) sum_(r=0)^(n) r ""^(n)C_(r) x^(r)`
`sum_(r=0)^(n) r(r -1) xx(n)/(r)xx(n-1)/(r-1) ""^(n-2)C_(r-2) x^(r) -2x^(2) + sum_(r=1)^(n)r xx (n)/(r) xx""^(n-1)C_(r-1) x^(r-1) xxx`
` = n (n-1) x^(2) sum_(r=2)^(n) ""^(n-1)C_(r-2) x^(r-2) + nx sum_(r=1)^(n) ""^(n-1)C_(r-1) x^(r-1)`
`= n(n-1) x^(2) (1 + x)^(n-2) +nx (1 + x)^(n-1)`
So, statement-2 s also true.
Clearly, statement-1 is a correct expanation for statememt -2.
But, statement-2 is not a correct expanation for statement-1.
53.

Find the greatest value of the term independent of `x`in the expansion of `(xsinalpha+(cosalpha)/x)^(10)`, where `alpha in Rdot`A. `2^(5)`B. `(10!)/((5!)^(2))`C. `(10!)/(2^(5) xx(5 !))^(2)`D. none of these

Answer» Correct Answer - c
Let `(r + 1)^(th)` term be indepandent of x.
We have,
`T_(r + 1) = ""^(10)C_(r) (x sin alpha)^(10 - r) ((cos alpha)/(x))^(r)`
`rArr T_(r +1) = ""^(10)C_(r) x ^(10 - 2r) (sin alpha)^(10 - r) (cos alpha )^(r)`
If it is independent of x, then r = 5
`therefore ` Term independent of x,
`= T_(6)= ""^(10)C_(5)(sin alpha cos alpha)^(5) = ""^(10)C_(5) xx2 ^(-5) (sin 2 alpha)^(5)`
Clearly , it is greatest when 2 `alpha = pi 2` and its greatest value is
`""^(10)C_(5) xx2^(-5) = (10!)/(2^(5) (5!)^(2))`
54.

Find the term independent of `x`in the expansion of `(1+x+2x^3)[(3x^2//2)-(1//3)]^9`A. `1//3`B. `19//54`C. `17//54`D. `1//4`

Answer» Correct Answer - c
We have,
`(1 + x + 2x^(3))((3)/(2) x^(2)-(1)/(3x))^(9)`
`(1 + x + 2x^(3)){sum_(r=0)^(9)""^(9)C_(r) ((3)/(2) x^(2))^(9-r)(-(1)/(3x))^(r)}`
`(1 + x + 2x^(3)){sum_(r=0)^(9)""^(9)C_(r) ((3)/(2))^(9-r)(-(1)/(3))^(r)x^(18 - 3r)}`
`= {sum_(r=0)^(9)""^(9)C_(r) ((3)/(2))^(9-r)(-(1)/(3))^(r)x^(18 - 3r)}`
`+ {sum_(r=0)^(9)""^(9)C_(r) ((3)/(2))^(9-r)(-(1)/(3))^(r)x^(19 - 3r)}`
`+2 {sum_(r=0)^(9)""^(9)C_(r) ((3)/(2))^(9-r)(-(1)/(3))^(r)x^(21 - 3r)}`
Clearly, first and third expansions contain term idepen-
dent of x and obtained by equation 18 - 3r = 0 and 21 -3r = 0
respectivley.
So, coefficient of the term independent of x
`""^(9)C_(6) ((3)/(2))^(9-6)(1-(1)/(3))^(6) +2{""^(9)C_(7)((3)/(2))^(9-7) (-(1)/(3))^(7)}`
` (7)/(18) - (2)/(27) = (17)/(54)` .
55.

The coefficient of the term independent of x in the expansion of `((x+1) /(x^(2//3) - x^(1//3) + 1 )- (x -1)/(x - x ^(1//2)))^(10)`A. 210B. 105C. 70D. 112

Answer» Correct Answer - a
We have,
= `(x+1) /(x^(2//3) - x^(1//3) + 1 )- (x -1)/(x - x ^(1//2))` ltbrge `((x^(1//3))^(3) + 1^(3)) /(x^(2//3) - x^(1//3) + 1 )- (x -1)/( x ^(1//2)-1)`
= `((x^(1//3)+ 1) x^(2//3) - x^(1//3) + 1 )/(x^(2//3) - x^(1//3) + 1 )- (x^(1//2) +1)/( x ^(1//2))`
` x^(1//3) + 1 + 1 - x ^(-1//2) = x^(1//3) - x^(-1//2)`
`((x+1)/(x^(2//3) - x^(1//3) + 1 )-(x-1)/ (x-x^(1//2)))^(10) = (x^(1//3) - x ^(-1//2))^(10)`
Let `T_(r +1)` be the general term in `(x^(1//3) - x ^(-1//2))^(10)`. Then,
`t_(r +1) = ""^(10)C_(r) (x^(1//3)^(10-r)(-1)^(r) (x ^(-1//2))^(r)`
For this term sto be independent of x, we must have
`(10 - r)/(3) - (r)/(2) = 0 rArr 20 - 2r - 3r = 0 rArr r = 4`
So, required coefficient = `""^(10)C_(4) (-1)^(4) = 210`
56.

Consider the expansion `(x^(2)+(1)/(x))^(15)`. What is the independent term in the given expansion ?A. `""^(15)C_(9)`B. 0C. `-""^(15)C_(9)`D. 1

Answer» Correct Answer - c
Let `(r +1)^(th) ` term be the constant term in the
expansion of `(x^(3) - (1)/(x^(2)))^(15)` .
`because T_(r+1) = ""^(15)C_(r) (x^(3))^(15-r) (-(1)/(x^(2)))^(r)` is independent of x
`rArr T_(r +1) = ""^(15)C_(r) x^(45 - 5r) (-1)^(r)` is independent of x
`rArr 45 - 5r = 0 rArr r = 9`
Thus , tenth is independent of x and is given by
`T_(10) = ""^(15)C_(9) (-1)^(9) = - ""^(15)C_(9)`
57.

Statement-1: ` sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1)` Statement -2: ` sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)`A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
We have ,

` sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = sum_(r =0)^(n) r. ""^(n)C_(r) x^(r)+ sum_(r =0)^(n) r. ""^(n)C_(r) x^(r)`
`rArr sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = sum_(r =1 )^(n) rxx(n)/(r)xx ""^(n-1)C_(r-1) x^(r-1)xxx+ sum_(r =0)^(n) ""^(n)C_(r) x^(r)`
`rArr sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) =nx sum_(r =1)^(n) ""^(n-1)C_(r-1) x^(r-1)xxx+ sum_(r =0)^(n) ""^(n)C_(r) x^(r)`
`rArr sum_(r=0)^(n) (r+1)""^(n)C_(r) x^(r) = nx (1 + x)^(n-1) + 2 ^(n) (n +2)2^(n-1)`
So, statement -1 is also ture ans statement-2 is a correct
expanation for statement-1 .
58.

The term independent of x in the expansion of `((1)/(x^(2)) + (1)/(x) +1 + x + x^(2))^(5)`, isA. 381B. 441C. 439D. 359

Answer» Correct Answer - a
We have,
`((1)/(x^(2)) + (1)/(x) + 1+ x + x^(2))^(5) = {(1)/(x^(2))((1 -x^(5))/(1 - x))}^(5) = (1)/(x^(10)) (1 - x^(5))^(5)(1 - x)^(-5)`
Clearly, the term independent of x in ` ((1)/(x^(2)) + (1)/(x) + 1 + x + x^(2))^(5)` is
equal to the coefficient of `x^(10)` in `(1 - x ^(5))^(5) (1 - x)^(-5)` .
Now,
`(1 - x^(5))^(5) (1 - x )^(-5) = (""^(5)C_(0) - ""^(5)C_(1)x^(5)+""^(5)C_(2)x^10-...)(sum_(r=0)^(infty)""^(4 +r)C_(r)x^(r))`
`- (""^(5)C_(0) - ""^(5)C_(1)x^(5)+""^(5)C_(2)x^10-...)(sum_(r=0)^(infty)""^(4 +r)C_(4)x^(r))`
`therefore ` Coefficient of `x^(10)` in `(1 - x ^(5))^(5) (1 - x)^(-5)`
`=""^(5)C_(0) xx ""^(14)C_(4)-""^(5)C_(1)xx""^(9)C_(4)+""^(5)C_(2)xx""^(4)C_(4)= 381`
59.

Stetemet - 1: `sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1)` Statement-2: ` sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x`A. 1B. 2C. 3D. 4

Answer» Correct Answer - a
We have,
`sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = sum_(r=0)^(n) r (n)/(r) ""^(n-1)C_(r-1) x^(r-1) xxx`
`rArr sum_(r =0)^(n) r ""^(n)C_(r) x^(r) = nx sum_(r=1)^(n) ""^(n-1)C_(r-1) x^(r -1)`
`rArr sum_(r=0)^(n) r ""^(n)C_(r) x^(r) = nx (1 + x)^(n-1)` ...(i)
So, statement-2 is true.
Replacing x by in (i), we get `sum_(r=0)^(n) r ""^(n)C_(r) = n2^(n-1)`
So, statement -1 is also true stetement -2 is a correct
expansion for statement-1.
60.

The value of `sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2)` is equal toA. `n^(2) ""^(2n -1)C_(n -1)`B. `n^(2) """^(2n-2)C_(n)`C. `n^(2) ""^(2n)C_(n -1)`D. `n^(2) ""^(2n -1)C_(n)`

Answer» Correct Answer - b
`sum_(r=0)^(n) (n-r)(""^(n)C_(r))^(2)`
`= n sun_(r=0)^(n) (r ""^(n)C_(r)) (""^(n)C_(r)) - sum_(r=1)^(n) (r ""^(n)C_(r))^(2)`
`= n^(2) (sum_(r=1)^(n) ""^(n-1)C_(r-1) ""^(n)C_(r)) - n^(2) {sum_(r=1)^(n) (""^(n-1)C_(r-1))^(2)}`
`= n^(2)` { Coeff. of` "" x^(n-1)` in` (1 + x )^(2n-1)}`
` - n^(2) `{Coeff. of `x^(n-1)` in`(1 + x)^(2n-2)} `
`= n^(2) ""^(2n-1)c_(n-1) - n^(2) ""^(2n -2)C_(n-1)`
`n^(2) {((2n -1)1)/(n!(n-1)!) - ((2n -2)!)/((n-1)!(n-1)!) -n^(2) ((2n -2)!)/((n-2)!n)`
` n^(2) ""^(2n-2)C_(n)`
61.

The sum of rational term(s) in `(sqrt3 + 2^(1/3) + 5^(1/4))^8` is equal toA. 3150B. 336C. 3486D. 3592

Answer» Correct Answer - d
The general term in the expansion of
`(sqrt(3) + root(3)(2)+ root(4)(5))^(8)` is
`(8!)/(r!s!t!)(3)^(r//2) (2)^(s//3)(5)^(1//4)`, where ` r + s + t = 8`
For rational terms, we must have,
`(i) r = 3 , s=6, t=0 " "(b) r = 4 , s = 0, t= 4`
`(c) r = 0 , s=0, t=8 " "(d) r = 8 , s = 0, t= 0`
`therefore ` Sum of rational terms
`(8!)/(3!6!0!)xx3xx2^(2)xx5^(0) + (8!)/(4!0!4!)xx3^(2)xx2^(0)xx5`
`(8!)/(0!0!8!)xx3^(0)xx2^(0)xx5^(2) + (8!)/(8!0!0!)xx3^(4)xx2^(0)xx5^(0)`
= 3592
62.

The number of real negative terms in the binomial expansion of `(1+i x)^(4n-2),n in N ,x >0`is`n`b. `n+1`c. `n-1`d. `2n`A. nB. n+1C. n-1D. 2n

Answer» Correct Answer - b
Let `T_(r+1)` be the `(r +1)^(th)` term in the binomial
expanion of `(1 + ix)^(4n -2)` . Then
`T_(r+1) = ""^(4n-2)C_(r)(ix)^(r) = ""^(2n-2)C_(r)x^(r)i^(r)`
Clearly, `T_(r +1) ` is real negative , if ` r=2 ,6,10,14,…`
These values of r from an A.P. with term 2 and common
difference 4. lies between 2 and 4n -2
`therefore 2 le 4k - 2 le 4n - 2 rArr 1 le k le n`
Hence, there are n real negative terms.
63.

If `(3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2` number of pairs (a, b) for which the equation is true is, (a, b are rational numbers)A. 1B. 6C. 0D. infinite

Answer» Correct Answer - C
We have,
`(3 + asqrt(2))^(100) + (3 + bsqrt(2))^(100) = 7 + 5 sqrt(2)`
`rArr (3 - a sqrt(2))^(100)+ (3 - b sqrt(2))^(100) = 7 - 5 sqrt(2)`
We observe that LHS `gt` 0 for all pairs (a, b). So, the above
equality is not ture for any pair (a, b) of ratinoal number.
64.

If `(1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n)`, then the sum `C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1))` is equal toA. `n 2^(n -1)`B. `( n-1)2^(n)`C. ` n 2 ^(n)`D. `(n+1)2^(n)`

Answer» Correct Answer - a
We have,
`C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +C_(2)+…+C_(0)+C_(1) +C_(2)+...+ C_(n-1))`
`nC_(0) +(n-1)C_(1) + (n-2) C_(2) +...+C_(n-1)`
`= sum_(r=1)^(n)(n-r)""^(n)C_(r)`
`= sum_(r=1)^(n)n. ""^(n)C_(r)- sum_(r=0)^(n) r. ""^(n)C_(r)`
`=n sum_(r=1)^(n) ""^(n)C_(r)-n sum_(r=0)^(n) ""^(n-1)C_(r-1)= n2^(n) - n2^(n-1) = n2^(n-1)` .
65.

So, statement-1 is also true. Stetement-2 is a correct expanation for statement-1. `S_(1)= sum_(j=1)^(10) j (j -1)""^(10)C_(j),S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) and S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) .` Statement-1 `S_(3) = 50xx2^(9)`. Statement-2 `S_(1) = 90xx2^(8) and S_(2) = 10 xx 2^(8)`A. 1B. 2C. 3D. 4

Answer» Correct Answer - d
We have, `S_(2)= sum_(j=1)^(10) j ""^(10)C_(j)=sum_(j=1)^(10) jxx(10)/(j) xx(10)/(j) ""^(9)C_(j-1) = 10 sum_(j=1)^(10)""^(9)C_(j-1) = 10 xx2^(9)`
`S_(1)= sum_(j=1)^(10) (j-1) ""^(10)C_(j)=sum_(j=1)^(10) j(j-1)xx(10)/(j) xx(9)/(j-1) xx""^(8)C_(j-2)`
`rArr S_(2) = 10 xx9 sum_(j=2)^(10) ""^(8)C_(j-2) = 90 xx2^(8)`
and, `s_(3) = sum_(j=1)^(10) j^(2) ""^(10)C_(j) = sum_(j=1)^(10){j (j -1)+ j} ""^(10)C_(j)`
`rArr S_(3) = sum_(j = 1)^(10) j(j -1)""^(10)C_(j) + sum_(j=1)^(10) j ""^(10)C_(j) = 10 xx9 2^(8) + 10 xx2^(9)`
`rArr S_(3) = 11 xx10 xx2^(8)`
So, statement-2 is true and statement-1 is false.
66.

The coefficient of `x^(20)` in ` (1 + 3x + 3x^(2) + x^(3))^(20)`,I sA. `""^(60)C_(40)`B. `""^(30)C_(20)`C. `""^(15)C_(2)`D. none of these

Answer» Correct Answer - a
We have ,
`(1 + 3x + 3x^(2) + x^(3))^(20) = { (1+ x)^(3) }^(20) = (1 + x)^(60)`
`therefore ` Coefficient of `x^(20) ` in` (1 + 3x + 3x^(2) + x^(3))^(20)`
= Coefficient of `x^(20)` in `(1 + x)^(60) = ""^(60)C_(20) = ""^(60)C_(40)`
67.

The sum of the series ` sum_(r=0) ^(n) ""^(2n)C_(r), ` isA. `n 2^(2n-1)`B. `2^(2n - 1)`C. `2^(n-1) + 1`D. none of these

Answer» Correct Answer - a
We have,
`rArr sum_(r=1)^(n)r. ""^(2n)C_(r) = sum_(r=1)^(n) r . (2n)/(r) ""^(2n-1)C_(r-1)`
`rArr sum_(r=1)^(n)r. ""^(2n)C_(r) = 2n sum_(r=1)^(n) ""^(2n-1)C_(r-1)`
`rArr sum_(r=1)^(n)r. ""^(2n)C_(r) = 2n {""^(2n-1)C_(0)+""^(2n-1)C_(1)+""^(2n-1)C_(2)+ ...+""^(2n-1)C_(r-1)}`
`rArr sum_(r=1)^(n)r. ""^(2n)C_(r) = n {""^(2n-1)C_(0)+""^(2n-1)C_(1)+""^(2n-1)C_(2)+ ...+""^(2n-1)C_(r-1)+ `
`+ ""^(2n-1)C_(0)+""^(2n-1)C_(n+1)+...+""^(2n-1)C_(2n-2)+""^(2n-1)C_(2n-1)}`
""`[because ""^(n)C_(r) = ""^(n)C_(n-r)]` .
`rArr sum_(r=1)^(n) r. ""^(2n)C_(r) = n (2(2n -1))`
68.

Statement-1: `(C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2))` Statement-2:`(C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx`A. 1B. 2C. 3D. 4

Answer» Correct Answer - a
We have,
`(1 - x)^(n) = C_(0) - C_(1) x + C_(2) x^(2) - ...+ (-1)^(n) C_(n)x^(4)`
`rArr x^(k-1) (1 - x)^(n) = C_(0) x^(k-1) - C_(1) x^(k)+ C_(2) x^(k+1)-.... + (-1)""^(n)C_(n) x^(n+k-1) `
`rArr underset(0)overset(1)(int)x^(k-1) (1 - x)^(n) dx=(C_(0))/(k)-(C_(1))/(k+1) + (C_(2))/(k+2) - ....+ (-1)^(n) (C_(n))/(k+n)`
So, statement-2 is true.
Replacing k= 2 and k = 3 respecitvely, we get
`underset(0)overset(1)(int)x^(k-1) (1 - x)^(n) dx=(C_(0))/(2)-(C_(1))/(3) + (C_(2))/(4) - ....+ (-1)^(n) (C_(n))/(n+2)` ...(i)
and `underset(0)overset(1)(int)x (1 - x)^(n) dx=(C_(0))/(3)-(C_(1))/(4) + (C_(2))/(5) - ....+ (-1)^(n) (C_(n))/(n+2)` ...(ii)
Subtracting (ii) from (i), we get
`underset(0)overset(1)(int)x (1 - x)^(n+1) dx-(C_(0))/(2.3)-(C_(1))/(3.4) + (C_(2))/(4.5) - ....+ (-1)^(n) (C_(n))/((n+2)(n+3))`
`rArr underset(0)overset(1)(int) (1 - x)x^(n+1) dx=(C_(0))/(2.3)-(C_(1))/(3.4) + (C_(2))/(4.5) - ...`
`+ (-1)^(n) (C_(n))/((n+2)(n+3))[because underset(0)overset(a)(int) f(x) dx = underset(0)overset(a)(int)f(a-x)dx]`
`underset(0)overset(1)(int) (x^(n+1)- x^(n+2)) dx=(C_(0))/(2.3)-(C_(1))/(3.4) + (C_(2))/(4.5)... + (-1)^(n) (C_(n))/((n+2)(n+3))`
`rArr (1)/((n+1)(n+2))= (C_(0))/(2.3)-(C_(1))/(3.4) + (C_(2))/(4.5)-...+ (-1)^(n) (C_(n))/((n+2)(n+3))`
Hence, statement-1 is also true and statement-2 is a correct
expanation for statement-1
69.

The sum of the series ` sum_(r=0) ^(n) "r."^(2n)C_(r), ` isA. `2^(2n -1) `B. `n . 2^(2n-1)`C. `n 2 ^(n-1)`D. `n 2^(2n - 2)`

Answer» Correct Answer - b
We have,
`sum _(r=0) ^(n) r ""^(2n)C_(r) = sum_(r=0)^(n) r (2n)/(r) ""^(2n -1) C_(r -1)`
`sum_(r=0) ^(n) r ""^(2n)C_(r) = n sum_(r=1)^(n) (""^(2n-1)C_(r-1)+""^(2n-1)C_(r-1))`
`sum_(r=0)^(n) r ""^(2n)C_(r) = n sum_(r=0)^(n) (""^(2n-1)C_(r-1)+""^(2n - 1) C_(r-1))`
`sum_(r=0)^(n) r ""^(2n)C_(r) = n sum_(r=0)^(2n-1) ""^(2n-1)C_(r)= n2^(2n -1)`
70.

For any n `in` N, let `C_(r)` stand for `""^(n)C_(r)`, ` r = 0,1,2,3,…,n` and let `S= sum_(r=0)^(n) (1)/(C_(r))` Statement-1: `underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(n))/(2)S` Statement-2:` underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS`A. 1B. 2C. 3D. 4

Answer» Correct Answer - a
We have,
`underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= sum_(i=0)^(n-1) (n-i)/(C_(i) )+ sum_(j=1)^(n) (j)/(C_(j))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= n sum_(i=0)^(n-1) (1)/(C_(i) )- sum_(i=0)^(n) (i)/(C_(i)) + sum_(j=1)^(1)(j)/(C_(j))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nsum_(i=0)^(n-1) (1)/(C_(i) )+(n)/(C_(n))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nsum_(i=0)^(n-1) (1)/(C_(i) )=nS`
So, statement-2 is true.
Let `S_(1) underset(0leiltj len) (sumsum) ((i)/(C_(i))+(j)/(C_(j)))` . Then
`S_(1) underset(0leiltj len) (sumsum) ((n-i)/(C_(n-i))+(n-j)/(C_(n-j)))` .
`rArr S_(1) = n underset(0leiltj len) (sumsum) ((1)/(C_(n-i))+(1)/(C_(n-j)))- underset(0leiltj len) (sumsum)((i)/(C_(n-i))+(j)/(C_(n-j)))`
`rArr S_(1) = n underset(0leiltj len) (sumsum) ((1)/(C_(i))+(1)/(C_(j)))- underset(0leiltj len) (sumsum)((i)/(C_(i))+(j)/(C_(j)))`
`rArr S_(1) = n(nS) - S_(1)` [ Using truth of statement-2]
`rArr 2S_(1) = n^(2) S rArr S_(1) = (n^(2))/(2)S`
So, statement-1 is true and stetement-2 is a correct expanation
for statement-1.
71.

The sum of the series ` sum_(r=0) ^(n) ""^(2n)C_(r), ` isA. `2^(2n)`B. `2^(n)`C. `2^(2n) + ""^(2n)C_(n)`D. `(1)/(2) (2^(2n) + ""^(2n)C_(n))`

Answer» Correct Answer - d
We have,
`sum_(r=0)^(n) ""^(2n)C_(r) = (1)/(2)sum_(r=0)^(n) (2^(2n) + ""^(2n)C_(n))` ltbbrgt `rArr sum_(r=0)^(n) ""^(2n)C_(r) = (1)/(2)sum_(r=0)^(n) ""^(2n)C_(2n) + ""^(2n)C_(n)r = (1)/(2)[ {sum_(r=0)^(2n) ""^(2n)C_(r)}+""^(2n)C_(n)r]`
`rArr sum_(r=0)^(n) ""^(2n)C_(r) = (1)/(2) (2^(2n) + ""^(2n) C_(n))` .
72.

Statement -1: ` sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1))` Statement-2: ` sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)`A. 1B. 2C. 3D. 4

Answer» Correct Answer - b
For truth of statement-2, see illustration 17 on page 14,16.
Now,
`sum_(r=0)^(n) rC_(r)""^(2)= sum_(r=0)^(n) r .""^(n)C_(r).""^(n)C_(r).=`
`rArr sum_(r=0)^(n) rC_(r)""^(2)=n sum_(r=0)^(n) ""^(n-1)C_(r-1).""^(n)C_(r).`
`rArr sum_(r=0)^(n) rC_(r)""^(2)=n .sum_(r=0)^(n) ""^(n-1)C_(n-r).""^(n)C_(r).`
`rArr sum_(r=0)^(n) rC_(r)""^(2)=n` Coefficient of `x^(n)` in `{ (1 + x)^(n -1) (1 + x)^(n)}`
`rArr sum_(r=0)^(n) rC_(r)""^(2)=n` Coefficient of `x^(n)` in ` (1 + x)^(2n+1)`
`rArr sum_(r=0)^(n) rC_(r)""^(2)=n^(2)""^(n-1)C_(n) = n^(2)""^(n-1)C_(n-1)`.
So, statement-1 is also true. But , statement-2 is not a correct
expanation for statement -1.
73.

The value of `1^2.C_1 ``+ 3^2.C_3 +`` 5^2.C_5 + ...` isA. `n(n -1)2^(n-2) + n.2^(n-1)`B. `n(n -1)2^(n-2)`C. `n(n+1). 2 ^(n-3)`D. none of these

Answer» Correct Answer - c
We have,
`sum_(r=1) ^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2) + n.2 ^(n-1)`
and , `sum_(r=1)^(n) (-1)^(r-1) r^(2) ""^(n)C_(r) = 0`
Adding these two, we get
`2{1^(2) C_(1) + 3^(2) C_(3) + 5^(2) C_(5) + …} = n (n-1) 2^(n-2) + n. 2^(n-1)`
`rArr 1^(2) C_(1) + 3^(2) . C_(3) + 5^(2). C_(5) +...= n(n -1) 2^(n-3) + n. 2^(n -2)` .
74.

The value of `(sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j))` is equal toA. `n2^(n)`B. `(n+1)2^(n)`C. `(n +2) 2^(n)`D. none of these

Answer» Correct Answer - c
We have,
`underset(0leilejlen)(sumsum)(""^(n)C_(i) + ""^(n)C_(j))` ltbrge `underset(0leilejlen)(sumsum)""^(n)C_(i) +underset(0leilejlen)(sumsum) ""^(n)C_(j)`
= `sum_(i=0)^(n) (n - i +1)""^(n)C_(i) + sum_(i=0)^(n) (j +1) ""^(n)C_(j)`
= `sum_(i=0)^(n) (n -r+1)""^(n)C_(r)+ sum_(i=0)^(n) (r +1)""^(n)C_(r)`
`sum_(i=0)^(n) (n +2)""^(n)C_(r)= (n+2) sum_(i=0)^(n) ""^(n)C_(j)= (n+2)2^(n)`.
75.

The remainder when `9^103` is divided by 25 is equal toA. 5B. 6C. 4D. none of these

Answer» Correct Answer - c
We have,
`9^(103)`
=` 9xx(81)^(51)`
= ` 9(80 + 1)^(51)`
`= 9{""^(51) C_(0) (80)^(51)+ ""^(51)C_(1) (80)^(50) + ""^(51)C_(2)(80)^(49) +...+""^(51)C_(50)(80) +1}`
`9 [ 25 k + (51 xx80 + 1)] `
`= 25 k lambda+ 36729`
`25 lambda + 25 xx1469 + 4`
` 25(lambda + 14 69) + 4` Hence, the remainder is 4,
76.

`2^60` when divided by 7 leaves the remainderA. 1B. 6C. 5D. 2

Answer» Correct Answer - A
We have,
`2^(60) = (1 + 7)^(20)`
`rArr 2^(60) = ""^(20)C_(0) + ""^(20) C_(1)xx 7 + ""^(20)C_(2)xx7^(2) + …+ ""^(20)C_(20) xx7^(20)`
`rArr 2^(60) =7( ""^(20)C_(1) + ""^(20) C_(2)xx 7 +...+ ""^(20)C_(2)xx7^(19))+1`.
`2^(60)` when divided by 7 leaves the remainder 1. .
77.

If `sum_(i=1)^(n-1) ((""^(n)C_(i-1))/(""^(n)C_(i)+""^(n)C_(i-1)))^(3) = (36)/(13)`, , then n is equal toA. 10B. 11C. 13D. 12

Answer» Correct Answer - d
We have ,
`sum_(i-1)^(n-1) ((""^(n)C_(i-1))/(""^(n)C_(i)+""^(n)C_(i-1)))^(3) = (36)/(13)`, ,
`rArr sum_(i-1)^(n-1) ((""^(n)C_(i-1))/(""^(n+1)C_(i)))^(3) = `(36)/(13) ` [ `because ""^(n) C_(r-1) + ""^(n)C_(r) = ""^(n+1)C_(r)]`
`rArr sum_(i-1)^(n-1) ((""^(n)C_(i-1))/((n+1)/(i)""^(n)C_(i-1)))^(3) = (36)/(13) `
`rArr sum_(i-1)^(n-1) ((i)/(n+1))^(3) = (36)/(13)`
`rArr (1)/(n+3)^(3) {(n(n+1))/(2)}^(2) = (36)/(13)`
`(n^(2))/(4 (n +1)^(3))= (36)/(13)`
`rArr (n^(2))/ (n +1)=(144)/(13) rArr (n^(2))/(n+1) = (12^(2))/((12 +1))rArr n=12`.
78.

The vaule of ` sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1))` is equal toA. `(n-1)/(n+1)`B. `(n+1)/(2)`C. `(n(n+1))/(2)`D. `(n)/(2)`

Answer» Correct Answer - d
We have
` sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r+1)) `
` sum_(r=0)^(n-1) (""^(n)C_(r))/( ""^(n+1)C_(r+1)) `
` sum_(r=0)^(n-1) (""^(n)C_(r))/( (n+1)/(r +1)""^(C_(r))) `
` sum_(r=0)^(n-1) (r+1)/(r+1)=(1)/(n+1)sum_(r=0)^(n-1) ( r+1) = (1)/(n+1) xx(n (n+1))/(n +1)= (n)/(2).` .
79.

The value of `sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1)))` is equal toA. 1085B. 560C. 680D. 1240

Answer» Correct Answer - c
We have,
` ((""^(15)C_(r))/(""^(15)C_(r-1)))= (n-r +1)/(r)`
`therefore sum_(r=1)^(15) r^(2) ((""^(15)C_(r))/(""^(15)C_(r-1)))sum_(r=1)^(15) r^(2)((15 - r +1)/(r)) = sum_(r=1)^(15) r (16 -r)`
`= 16 sum_(r=1)^(15) r- sum_(r=1)^(15) r^(2)`
`= (16xx15xx15)/(2) - (15xx16xx31)/(6) = 680`.
80.

The valur of `sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p)` is equal toA. `3^(n) - 2^(n)`B. `3^(n) - 2^(n) - 2`C. `3^(n) - 2^(n) + 2`D. none of these

Answer» Correct Answer - d
We have ,
`sum_(r=0)^(n) sum_(r=0)^(n) ""^(n)C_(r) . ""^(r)C_(p)`
`sum_(r=0)^(n) ""^(r)C_(p) (sum_(r=0)^(n) ""^(n)C_(p)) = sum_(r=0)^(n) . ""^(n)C_(r) 2^(r) = (1 +2)^(n) = 3^(n)` .
81.

`7^(103)` when divided by 25 leaves the remainder .A. 20B. 16C. 18D. 15

Answer» Correct Answer - c
We have,
` 7^(103) = 7(49)^(51)`
`rArr 7^(103) = 7(50 -1)^(51)`
` rArr 7^(103) = 7{""^(51)C_(90)(50)^(51) - ""^(51)C_(r)(50)^(50) + ""^(51)C_(2)(50)^(49)...-1}`
` rArr 7^(103) = 7{(50)^(51) - ""^(51)C_(1)(50)^(50) + ""^(51)C_(2)(50)^(49)...}-7`
`rArr 7^(103) = 7{(50)^(51) - ""^(51)C_(1)(50)^(50) + ""^(51)C_(2)(50)^(49)...}-7 - 18 + 18`
`rArr 7^(103) = 7{(50)^(51) - ""^(51)C_(1)(50)^(50) + ""^(51)C_(2)(50)^(49)...}-25 + 18`
`rArr 7^(103)` = Multiple of 25 + 18
Hence, remainder = 18.
82.

If `(1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n)`, then the value of `a_(0) + a_(4) +a_(8) + a_(12)+….. ` isA. -1B. 0C. `4^(n-1)`D. n

Answer» Correct Answer - c
We have,
` a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n)=(1 + x + x^(2) + x^(3))^(n)`
`rArr a_(0) + a_(2)x^(2) + a_(4)x^(4) +...)+( a_(1) x + a_(3) x^(3)+...) =(1 + x + x^(2) + x^(3))^(n)`
Puttinhg x = 1, - 1, i and -i respectively, we get
`( a_(0) + a_(2) + a_(4) +...)+( a_(1) + a_(3) +a_(5)+...) =4^(n)` ....(i)
`( a_(0) + a_(2) + a_(4) +...) - ( a_(1) + a_(3) +a_(5)+...) = 0 ` ...(ii)
`( a_(0) - a_(2) + a_(4) - a_(6) +...)+i ( a_(1) - a_(3) +a_(5)+...) = 0 ` ...(iii)
`( a_(0) - a_(2) + a_(4) - a_(6) +...)- i ( a_(1) - a_(3) +a_(5)+...) = 0 ` ....(iv)
Adding (i) and (ii), we get
` 2 (a_(0) + a_(2) + a_(4) + ....) = 4 ^(n)` ....(v)
Adding (iii) and (iv), we get
`2 (a _(0) - a_(2) + a_(4) - a_(6)+ ....) = 0` ...(vi)
Adding (v) and (vi), we get
` 4 ( a_(0) + a_(4) + a_(8) + ....) = 4^(n) rArr a_(0) + a_(4) + a_(8) + ... = 4^(n-1)`
83.

Let m be the smallest positive integer such that the coefficient of `x^2` in the expansion of `(1+x)^2 + (1 +x)^3 + (1 + x)^4 +........+ (1+x)^49 + (1 + mx)^50` is `(3n + 1) .^51C_3` for some positive integer n. Then the value of n isA. 16B. 5C. 21D. 11

Answer» Correct Answer - b
We find that
`(1 + x)^(2) + (1 + x)^(3) +… (1 + x)^(49) + (1 + mx)^(50)`
` = (1 + x)^(2) { ((1 + x)^(48) -1)/((1 + x) -1)} +(1 + mx)^(50)`
` (1)/(x) {( 1 + x)^(50) - (1 + x)^(2)} + (1 +mx)^(50)`
Coeffi. Of `x^(2)` in `(1 + x)^(2) + (1 + x)^(3) + ...(1 + x)^(49) + (1 +mx)^(50)`
= Coeffi.of `x^(2)` in `[(1)/(x) {(1 +x)^(50) - (1 + x)^(2)} +(1 +mx)^(50)]`
` Coeffi. of `x^(3)` in `{ (1 + x)^(50) - (1 + x)(2)} + ` Coefficient of `x^(2)` in `(1 +mx)^(50)`
`""^(50)C_(3) + ""^(50)C_(2) m^(2)`
It is given that this coefficient is `(3n +1) ""^(51)C_(3)` .
`therefore ""^(50)C_(3) + ""^(50)C_(2) m^(2) = (3n +1)""^(51)C_(3)`
`rArr (50xx49xx48)/(3xx2xx1)+(50xx49)/(2xx1)m^(2) = (3n-1)(51xx50xx49)/(3xx2xx1)`
`rArr 16 + m^(2) = 17 (3n +1)`
`rArr m^(2) = 51n+1`
The least value of n for which `51 N+1` is a perfect square is 5 and
for this value of n the value of m is 16.
Hence,m=16 and n=5.
84.

The value of `sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1)` is equal toA. ` 5 (2n -9)`B. `10`nC. `9 (n-4)`D. none of these

Answer» Correct Answer - a
We have ,
`sum_(r=1)^(10)r. (""^(n)C_(r))/(""^(n)C_(r-1)) = sum_(r=1)^(10) (n-r+1) `
`rArr sum_(r=1)^(10)r. (""^(n)C_(r))/(""^(n)C_(r-1)) = sum_(r=1)^(10) {(n+1) - r}`
` rArr sum_(r=1)^(10)r. (""^(n)C_(r))/(""^(n)C_(r-1)) = 10 (n+1) - sum_(r=1)^(10) r`
`rArr sum_(r=1)^(10)r. (""^(n)C_(r))/(""^(n)C_(r-1)) = 10 (n+1) -55= 10 n -45 = 5 (2n - 9).`
85.

Let `(1 + x)^(36) = a_(0) +a_(1) x + a_(2) x^(2) +...+ a_(36)x^(36)`. Then Statememt-1: `a_(0) +a_(3) +a_(6) +…+a_(36)= (2)/(3) (2^(36) +1)` Statement-2: `a_(0) + a_(2) +a_(4) +…+ a_(36) = 2^(35)`A. 1B. 2C. 3D. 4

Answer» Correct Answer - b
We have,
`a_(0) + a_(1) + a_(2) x^(2) + a_(3) + … + a_(36) x^(36) = (1 + x)^(36)` …(i)
Putting x = 1 `omega, omega^(2)` successively, we get
`(a_(0) + a_(3) + a_(6) +...+ a_(36) )+ (a_(1) + a_(4) + a_(7) +...+a_(34))+(a_(2) + a_(5) +...+a_(35)) = 2^(36)` ...(ii)
`(a_(0) + a_(3) + a_(6) +...+ a_(36) )+omega (a_(1) + a_(4) + a_(7) +...+a_(34))+omega^(2)(a_(2) + a_(5) +...+a_(35)) = 1` ...(iii)
`(a_(0) + a_(3) + a_(6) +...+ a_(36) )+omega^(2) (a_(1) + a_(4) + a_(7) +...+a_(34))+omega(a_(2) + a_(5) +...+a_(35)) = 1`
`(a_(0) + a_(3) + a_(6) +...+ a_(36) )+omega^(2) (a_(1) + a_(4) + a_(7) +...+a_(34))+omega(a_(2) + a_(5) +...+a_(35)) = 1` ....(iv)
Adding these three , we get
`3(a_(0) + a_(3) + a_(6) +....+ a_(36)) = 2 (2^(35) +1)`
`rArr a_(0) + a_(3) + a_(6) +....+a_(36) = (2)/(3) (2^(35) +1)`
So, statement-1 is true.
Putting x = -1 in (i) and adding it to (ii) , we get
`a_(0) + a_(2) + a_(4) +...+ a_(36) = 2^(35)`
So, statement-2 is true. But , statement-2 is not a correct explanation for satatement -1 .
86.

FOr ` xin r, x != -1` , If `(1+x)^(2016)+x(1+x)^(215)+x^2(1+x)^(2014)++x^(2016)=sum_(i=0)^2016 a_i x^i`, then `a_17` is equal to -A. `(2016!)/(16!)`B. `(2017!)/(2000!)`C. `(2017!)/(17!2000!)`D. `(1016!)/(17!1999!)`

Answer» Correct Answer - c
We have,
`(1 + x)^(2016) + x(1 + x)^(2015) + x^(2) (1 + x)^(2014) + ..+ x^(2016) = sum_(i=0)^(2016) a_(i) x^(i)`
`rArr (1 +x)^(2016) {(((x)/(1|x))^(2017) -1)/((x)/(1+x) -1)}= sum_(i=1)^(2016) a_(1) x^(j) `
`rArr {(1 + x)^(2017) - x ^(2017)} = sum_(i=1)^(2016) a_(i) x^(j)`
`rArr a_(17) = ` Coefficient of `x^(17)` in ` {( 1 + x)^(2017) - x^(2017)}`
`rArr a_(17)` = Coefficient of `x^(17)` in `(1 + x)^(2017)`
`rArr a_(17) = ""^(2017)C_(17) = (2017!)/(17!2000!)`
87.

P is a set containing n elements . A subset A of P is chosen and the set P is reconstructed by replacing the element of A. B such that A and B have no common elements, isA. `2^(n)`B. `3^(n)`C. `4^(n)`D. none of these

Answer» Correct Answer - b
Suppose A contains ` r (0 le r len)` elements. Then , B
is constructed by selecting some elements from the remaining
`(n-r)` elements. Clearly, A can be chosen in `""^(n)C_(r)` ways and B in
`(""^(n-r)C_(0)+""^(n-r)C_(1)+...+""^(n-r)C_(n-r) )= 2^(n-r)` ways.So, total number
of ways of choosing A and B is `""^(n)C_(r) xx2^(n-r)`. But , r can very from
0 to n.
`therefore ` Required number of ways = `sum_(r=0)^(n) ""^(n)C_(r) xx2^(n-r) = (1 + 2)^(n) = 3^(n)` .
88.

`(1 + x + x^(2))^(n) = a_(0) +a_(1)x + a_(2) x^(2) +...+ a_(2n )x^(2n)` , then `a_(0) a_(2n) - a_(1) a_(2r+1) + a_(2) a_(2r+2) - a_(3) a_(2r+3) +...+a_(2n-2r)a_(2n)=` .

Answer» Correct Answer - d
On equating the coefficients of `x^(2n +1)` on both sides
of (v) in illustration 25, we get
`a_(0) a_(2n) - a_(1) a_(2r+1) + a_(2) a_(2r+2) - a_(3) a_(2r+3) +...+a_(2n-2r)a_(n+r)`.
89.

There are p letters a, q letters b, r letters C.The number of ways of selecting k letters out of these if `p lt k lt q lt r` isA. `3^(n-1)`B. `n 3^(n)`C. `n3 ^(n-1)`D. `2 n ^(n-1)`

Answer» Correct Answer - c
If P `cup` Q conains exaclty one element , both P and Q
must be non-enpty. Thus, if P has r elements, Q must have
exactly one of these r elements and any number of elements
from among the reamaining (n-r ) elements in A, so that the
number of ways of choosing Q is `""^(r)C_(1) xx2^(n-r)` .
But, P can be chosen in `""^(n)C_(r)` ways. Therefore, P and Q can be
chosen in `""^(n)C_(1) xx""^(r)C_(1)xx2^(n-r)` , when P contains r elements. As r
can very from 1 to n . Therefore, P and Q in general can be
chosen in
`sum_(r=1)^(n) ""^(n)C_(r) xx""^(n)C_(r)xx2^(n-r)`
`=sum_(r=1)^(n) ""^(n)C_(r)r2^(n-r)`
`=sum_(r=1)^(n) (n)/(r) ""^(n-r)C_(r-1).r.2^(n-r)` "" `[because ""^(n)C_(r)= (n)/(r) ""^(n-1)C_(r - 1)]`
`nsum_(r=0)^(n) ""^(n-1)C_(r-1)2^(n-r)`
`nsum_(r=0)^(n) ""^(n-1)C_(r-1)2^((n-r)-(r-0)) = n(1 + 2)^(n+1) = n3^(n-1)`
90.

A is a set containing n elements . A subset of A is chosen at random. The set A is reconstructed by replacing the elements of P.A subet Q is again chosen at random. The number of ways of selecting P and Q, is .A. `2^(n)`B. `4^(n)`C. `2n`D. `3^(n)`

Answer» Correct Answer - b
The set A has n elemeats. So, it has `2^(n)` sunbsets.
Therefore, set P can be chosen in`""^(2^(n))C_(1)` ways. Similarly, set Q can
also be chosen in `""^(2^(n))C_(1)` ways .
`because ` Sets P and Q can be chosen in `""^(2^(n))C_(1)xx""^(2^(n))C_(1)=2^(n) xx2^(n) = 4^(n)`
ways.
91.

`sum_(r=0)^n (-1)^r .^nC_r (1+rln10)/(1+ln10^n)^r`A. 1B. -1C. nD. none of these

Answer» Correct Answer - d
Let `log_(e) 10 = x` . Then
`sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r) (1 + r log_(e)10)/((1 + log_(e) 10^(n))^(r) ) `
`sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)(1 + rx)/((1 + nx)^(r))`
`sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)((1 )/(1 + nx))^(r)+sum_(r=0)^(n) (-1)^(r) (n)/(r) ""^(n-1)C_(r-1) (rx)/((1 + nx)^(r))`
`sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)((1 )/(1 + nx))^(r)- (nx)/(1 + nx)sum_(r=1)^(n) (-1)^(r-1) ""^(n-1)C_(r-1) (1)/((1 + nx)^(r))`
` = (1 - (1) /(1+ nx))^(n) - (nx)/(1 + nx) (1 - (1)/(1 + nx))^(n-1)`
`= ((nx)/(1+nx))^(n) = ((nx)/(1+nx))^(n) = 0` .
92.

If `f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r`` "^rC_s` , then `f(3) =`A. 27B. 19C. 1D. 5

Answer» Correct Answer - b
We have,
`f(n) = sum_(s=1)^(n) sum_(r=s)^(n) ""^(n)C_(r) ""^(r)C_(s)`
`rArr f(n) = sum_(r =1)^(n) ""^(n)C_(1) + sum_(r=2)^(n) ""^(n)C_(r) ""^(r)C_(2) +….+ sum_( r= n -1)^(n) ""^(n)C_(r) ""^(r)C_(n-1) + ""^(n)C_(n) ""^(n)C_(n) `
`rArr f(n) = ""^(n)C_(1)""^(1)C_(1)+ ""^(n)C_(2)(""^(2)C_(1) + ""^(2)C_(2)) + ""^(n)C_(3) (""^(3)C_(1) + ""^(n)C_(2))+""^(n)C_(3)(""^(3)C_(1)+""^(3)C_(2) + ""^(3)C_(n))`
` + ....+ ""^(n) C_(n) (""^(n)C_(1) + ""^(n)C_(2) +.... + ""^(n)C_(n))`
`rArr f(n) = ""^(n)C_(1)xx(2^(1) -1) + ""^(n)C_(2) xx(2^(2) -1) + ""^(n)C_(3) xx(2^(3) -1) +... + ""^(n)C_(n) xx(2^(n) -1)`
`rArr f(n) = sum_(r=1)^(n) = ""^(n)C_(r) 2^(r) - sum_(r=1)^(n) ""^(n)C_(r)`
`rArr f(n) = sum_(r=0)^(n) = ""^(n)C_(r) 2^(r) - sum_(r=1)^(n) ""^(n)C_(r)`
`rArr f(n) = 3^(n) -2^(n)`
`rArr f(3) = 3^(3) - 2^(3) = 19`
93.

If n is an odd natural number, then `sum_(r=0)^n (-1)^r/(nC_r)` is equal to

Answer» Correct Answer - a
We have,
`sum_(r=0)^(n) ((-1)^(r))/(""^(n)C_(r) )= sum_(r=0)^((n+1)/(2)) {(( -1)^(r))/(""^(n)C_(r) )+ (-1)^(n-r)/(""^(n)C_(n-r))}`
`rArr sum_(r=0)^(n) ((-1)^(r))/(""^(n)C_(r) )= sum_(r=0)^((n+1)/(2))(-1)^(r) {(( -1)^(r))/(""^(n)C_(r) )+ (-1)^(n-r)/(""^(n)C_(n-r))}`
`rArr sum_(r=0)^(n) ((-1)^(r))/(""^(n)C_(r) )= sum_(r=0)^((n+1)/(2))(-1)^(2) {( 1)/(""^(n)C_(r) )+ (1)/(""^(n)C_(r))}= 0 [{:(therefore " is odd and "),(""^(n)C_(r) = ""^(n)C_(n-r)):}]` . s
94.

If `S_n=sum_(r=0)^n 1/(nC_r) and sum_(r=0)^n r/(nC_r),` then `t_n/S_n=`A. `(2 n - 1)/(2) `B. `(n)/(2) -1`C. n-1D. `(n)/(2)`

Answer» Correct Answer - d
We have,
`s_(n) = sum_(r=0)^(n) (r)/(""^(n)C_(r)) = (n)/(2) s_(n)` [ See Example 37]
`rArr (t_(n))/(s_(n)) = (n)/(2)` .
95.

If `s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)),` then `t_n/s_n=`A. n-1B. n+1C. `(n)/(2)`D. none of these

Answer» Correct Answer - c
We have,
`t_(n) =sum_(rlts) ( (r)/(""^(n)C_(r))+(s)/(""^(n)C_(s)))`
`rArr t_(n) =sum_(rgts)( (r)/(""^(n)C_(r))+(s)/(""^(n)C_(s)))`
`rArr t_(n) =sum_(n-rltn-s)( (n-r)/(""^(n)C_(n-r))+(n-s)/(""^(n)C_(n-s)))`
`rArr t_(n) =sum_(rlts)( (1)/(""^(n)C_(r))+(1)/(""^(n)C_(s)))- sum_(rlt s)( (r)/(""^(n)C_(r))+(s)/(""^(n)C_(s)))`
`rArr t_(n) = n s_(n) - t_(n) rArr (t_(n))/(s_(n)) = (n)/(2)`
96.

Let `f (n) =sum_(r=1)^n r^2 C_r^2`.Then, `f (5) =`A. `""^(8)C_(4)`B. `25xx""^(8)C_(4)`C. `25 xx""^(8)C_(5)`D. none of these

Answer» Correct Answer - b
`f(n) = sum_(r=1)^(n) r^(2) C_(r)""^(2)`
`rArr f(0)= sum_(r=1)^(n) (r ""^(n)C_(r))^(2) = n^(2) sum_(r=1)^(n) (""^(n-1)C_(r-1))^(2)`
`rArr f(n) = n^(2)""^(2n -2)C_(n-1)`
`rArr (5) = 25xx""^(8)C_(4)`
97.

The coefficient of `x^(7)` in the expansion of `(1-x-x^(2) + x^(3))^(6)` is :A. 144B. -132C. -144D. 132

Answer» Correct Answer - c
We have
`(1 - x - x^(2) + x^(3))^(6) = {(1 - x)( 1 - x^(2))}^(7) = (1 - x )^(7) = (1 - x)^(7) (1 - x^(2))^(7)`
= `(""^(6)C_(0) - ""^(6)C_(1) x + ""^(6)C_(2)x^(2) - ""^(6)C_(3)x^(3) +... + ""^(6)C_(6)x^(6))`
`(""^(6)C_(0) - ""^(6)C_(1) x^(2) + ""^(6)C_(2)x^(4) - ""^(6)C_(3)x^(6) +... )`
`therefore` Coefficient of `x^(7)` in `(1 - x - x^(2) + x^(3))^(6)`
` = - ""^(6)C_(1)xx (-""^(6)C_(3)) - ""^(6)C_(3)xx ""^(6)C_(3)xx ""^(6)C_(2) - ""^(6)C_(5) xx - (""^(6)C_(1))`
` 120 - 300 + 36 = -144` .
98.

If `sum_(r=0)^(2n)(-1)^r(2n(C_r)^2=alpha_1`, then `sum_(r=0)^(2n)(-1)^r(r-2n)(2n(C_r)^2=`A. `nalpha`B. `-n alpha `C. `0D. none of these

Answer» Correct Answer - b
Let `beta = sum_(r=0)^(2n) (-1)^(r) (r -2n)(""^(2n)C_(r))^(2)` …(i)
`rArr beta = - sum_(r=0)^(2n) (-1)^(r) (2n -r) (""^(2n)C_(2n-r))^(2)`
Writing the terms in the neverse order, we get
`beta = sum_(r=0)^(2n) (-1)^(r) r(""^(2n)C_(r))^(2) ` ...(ii)
Adding (i) and (ii), we get
`2beta = - sum_(r=0)^(2n) (-1)^(r) (""^(2n)C_(r))^(2)`
`rArr 2 beta = - 2n sum_(r=0)^(2n) (-1)^(r) (""^(2n)C_(r))^(2)`
`rArr 2 beta = - 2nalpha rArr beta = - n alpha ` .
99.

For `r= 0, 1,.....,10`, let `A_r,B_r, and C_r`denote, respectively, the coefficient of `x^r` in the expansions of `(1 +x)^10,(+x)^20 and (1+ x)^30`.Then `sum_(r=1)^10 A_r(B_10B_r-C_10A_r)` is equal toA. `B_(10 - C_(10)`B. `A_(10)(B_(10)^(2) - C_(10)A_(10))`C. 0D. `C_(10)- B_(10)`

Answer» Correct Answer - d
We have,
`A_(r) = ""^(10)C_(r), B_(r) = ""^(20)C_(r) and C_(r) = ""^(30)C_(r)`
`because sum _(r=1)^(10) A_(r) (B_(10)B_(r)- C_(10)A_(r))`
`= B_(10) sum_(r=1)^(10) A_(r) B_(r) - C_(10) sum_(r=1)^(10) (A_(r))^(2)`
`= B_(10)(sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(r)) - C_(10) sum_(r=1)^(10) (""^(10)C_(r))^(2)`
`= B_(10)(sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(20-r)) - C_(10) {sum_(r=1)^(10) (""^(10)C_(r))^(2) -1}`
`= B_(10){sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(20-r)-1} - C_(10) {sum_(r=1)^(10) (""^(10)C_(r))^(2) -1}`
` b_(10)XX` {Coefficient of `x^(20)` in `(1 + x )^(10) (x + 1) ^(20) -1} - C_(10) {""^(20)C_(10 -1)}`
`B_(10)xx {""^(30) C_(20) -1} - C_(10) {""^(20)C_(10) -1}`
`B_(10){ ""^(30)C_(10) -1} - C_(10) {""^(20)C_(10) -1} `
`B_(10) (C_(10) -1} - C_(10) { ""^(20) C_(10) -1}`.
100.

Find the sum of the coefficients of all the integral powers of `x`in the expansion of `(1+2sqrt(x))^(40)dot`A. `3^(40) +1`B. `3^(40) -1`C. `(1)/(2)(3^(40) -1)`D. `(1)/(2)(3^(40) +1)`

Answer» Correct Answer - d
We have,
`( 1 + 2sqrt(x))^(40)= ""^(40)C_(0) + ""^(40)C_(1)(2sqrt(x)) + ""^(40)C_(2)(2sqrt(x))^(2) + ...+ ""^(40)C_(40)(2sqrt(x))^(40)`
`rArr ( 1 + 2sqrt(x))^(40)= (""^(40)C_(0) + ""^(40)C_(1)xx2x+ ""^(40)C_(4)xx2^(2) x^(2) + ...+ ""^(40)C_(20)xx 2^(10)x^(10))`
+`(""^(40)C_(1) xx2sqrt(x)+ ""^(40)C_(3)xx2 + ""^(40)C_(3)xx2^(2) + ...+ ""^(40)C_(19)xx 2^(19)x^(10//2))` ...(i)
Putting `sqrt(x) = 1 ` and - 1 respectively, we get
`3^(40) = {""^(40)C_(0)+ ""^(40)C_(2)xx2 + ""^(40)C_(4)xx2^(2) + ...+ ""^(40)C_(20)xx 2^(10)}`
`+{""^(40)C_(1) xx 2 + ""^(40)C_(3)xx2^(3) + ...+ ""^(40)C_(20)xx2^(19)}`
and ,
`1= {""^(40)C_(0) + ""^(40)C_(2)xx2 +""^(40)C_(4)xx2^(2)+...+""^(40)C_(20)xx2^(10)}`
`- {""^(40)C_(1)xx2 + ""^(40)C_(3)xx2^(3) +...+""^(40)C_(19)xx2^(10)}`
`therefore 3^(40) + 1 = 2 {""^(40)C_(0)+ ""^(40)C_(2)xx2+ ""^(40)C_(4) xx2^(2)+...+""^(40)C_(20)xx2^(10)}`
`rArr ""^(40)C_(0)+ ""^(40)C_(2)xx2+ ""^(40)C_(4) xx2^(2)+...+""^(40)C_(20)xx2^(10)= (3^(40) + 1)/(2)` .