Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

If `z = -5 + 3i`, find the value of `(z^(4)+9z^(3)+26z^(2)-14z + 8)`.

Answer» We have
`z = -5 + 3i rArr (z + 5) = 3i rArr (z+5)^(2) = 9i^(2) rArr z^(2) + 10z + 34 = 0." "...(i)`
Now, `z^(4) + 9z^(3) + 26z^(2) - 14z + 8`
`= z^(2)(z^(2) + 10z + 34) -z(z^(2) + 10z + 34) + 2(z^(2) + 10z + 34) - 60" "["using (i)"]`
Hence, the value of `z^(4) + 9z^(3) + 26z^(2) - 14z + 8` is -60.
202.

Solve the equation `25 x^2-30 x+11=0`by using the general expression for roots quadratic equation `a x^2+b x+c=0,`we get: `a=25 ,b=-30a d nc-11`.

Answer» Correct Answer - `{(3)/(5)+(sqrt(2))/(5)i,(3)/(5)-(sqrt(2))/(5)i}`
203.

0, The equation formed by decreasing each root of the equation ` a x^2 + bx + c = 0` by 1 is ` 2 x^2 + 8x + 2 = 0` then

Answer» Let `alpha,beta ` are the roots of equation `ax^2+bc+c = 0`
Then, `alpha-1` and `beta-1` are the roots of equation `2x^2+8x+2 = 0`
Then, sum of roots, ` (alpha-1)+(beta-1) = -8/2`
`=>alpha+beta = -4+2`
`=>alpha+beta = -2->(1)`
Product of roots, ` (alpha-1)(beta-1) = 2/2`
`=>alphabeta-alpha-beta+1 = 1`
`=>alphabeta -(alpha+beta) = 0`
`=>alphabeta = alpha+beta`
`=>alphabeta = -2->(2)`
As, `alpha` and `beta` are the roots of `ax^2+bx+c = 0`
`:. -b/a = alpha+beta and c/a = alphabeta`
`=> -b/a = -2 and c/a = -2`
`=>b = 2a and ca= -2a`
`=>b=-c`
So, option `2` is the correct option.
204.

The number of integral solutions of `x^2+9

Answer» `x^2+9< (x+3)^2`
`x^2+9`6x>0`
`x>0`
`x^2+9+6x<8x+25`
`x^2-2x-16<0`
`x=(2+-sqrt(4+64))/2`
`x=(2+-sqrt(17))/2`
`=1+-sqrt17`
`1-sqrt17 < x <1+sqrt17 `
`0 < x <1+sqrt17`
`0 < x < 5......`
`x= 1,2,3,4,5,`
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
``
205.

Solve the following quadratic: `17 x^2-8x+1=0`

Answer» Correct Answer - `{(4)/(17)+(1)/(17)i,(4)/(17)-(1)/(17)i}`
206.

If `z = 3 + 2i`, prove that `z^(2) - 6z + 13 = 0` and hence deduce that `3z^(3) - 13z^(2) + 9z + 65 = 0`.

Answer» `z = 3 + 2i rArr z -3 = 2i rArr (z - 3)^(2) = 4i^(2)`
`rArr" "z^(2) - 6z + 13 = 0" "...(i)`.
Thus, `z^(2) -6z + 13 = 0`.
Now, `3z^(3) - 13z^(2) + 9z + 65 = 3z(z^(2) - 6z + 13)+5(z^(2) - 6z + 13)=(3z xx 0) + (5 xx 0) = 0" "["using (i)"]`
Hence, `3z^(2) - 13z^(2) + 9z + 65 = 0`.
207.

Solve the equation:`x^2+3x+5=0`

Answer» Correct Answer - `{(-3)/(2)+(sqrt(11))/(2)i,(-3)/(2)-(sqrt(11))/(2)i}`
208.

Solve: `8x^(2) + 2x + 1 = 0`

Answer» Correct Answer - `{(-1)/(8)+(sqrt(7))/(8)i,(-1)/(8)-(sqrt(7))/(8)i}`
209.

Solve: `2x^(2)-sqrt(3) x + 1 = 0`

Answer» Correct Answer - `{(sqrt(3))/(4)+(sqrt(5))/(4)i,(sqrt(3))/(4)-(sqrt(5))/(4)i}`
210.

`sum_(n = 1)^(13)(i^(n)+i^(n+1))=(-1+i), n in N`.

Answer» `underset(n = 1)overset(13)sum (i^(n)+i^(n+1))=underset(n = 1)overset(13)sum i^(n)(1+i)=(1+i).underset(n = 1)overset(13)sum i^(n)`
`=(1+i).(i+i^(2)+i^(3)+....+i^(13)}`
`=(1+i)(a(1-r^(n)))/((1-r))`, where a=i, r=i, and n = 13
`(1+i).(i(1-i^(13)))/((1-i))= i(1+i).((1-i))/((1-i))=(-1 + i)." "[because i^(13) = (i^(13) = (i^(4))^(13) xx i = 1 xx i = i]`
211.

Solve: `x^(2) + x + 1 = 0`

Answer» Correct Answer - `{(-1)/(2)+(sqrt(3))/(2)i,(-1)/(2)-(sqrt(3))/(2)i}`
212.

Evaluate `sum_(n=1)^(13)(i^n+i^(n+1)),`where `n in Ndot`

Answer» Given that, `sum_(n=1)^(13) (i^(n) + i^(n+1)), "where n" in N. `
` =(i+i^(2)+ i ^(3) + i^(4)+ i^(5)+ i^(6)+ i^(7)+ i^(8)+ i^(9)+ i^(10)+ i^(11)+ i^(12)+ i^(13))` + ` (i+i^(2)+ i ^(3) + i^(4)+ i^(5)+ i^(6)+ i^(7)+ i^(8)+ i^(9)+ i^(10)+ i^(11)+ i^(12)+ i^(13)+i^(14))`
` =(i+2i^(2)+ 2i ^(3) + 2i^(4)+ 2i^(5)+ 2i^(6)+ 2i^(7)+ 2i^(8)+ 2i^(9)+ 2i^(10)+ 2i^(11)+ 2i^(12)+ 2i^(13)+i^(14))`
=`i-2-2i+2+2i+2(i^(4))+i^(2)+2(i)^(4)i^(3)+2(i^2)^(4)i+2(i^(2))^(5)+2(i^(2))^(5).i+2(i^(2))^(6)+2(i^(2))^(6).i+(i^(2))^(7)`
`=i-2-2i+2+2i-2-2i+2+2i-2-2i+2+2i-1-1-i`
"Alternate Method"
`sum_(n=1)^(13) (i^(n) + i^(n+1)), " n" in N =`
`=(1 -i)[i+i^(2)+i^(3)+i^(4)+i^(5)+i^(6)+i^(7)+i^(8)+i^(9)+i^(10)+i^(11)+i^(13)] `
`=0(1-i)[i^(13)]" "[:.i^(n)+i^(n+1)+i^(n+2)+i^(n+3)= 0. where n in N i.e., `sum_(n=1)^(13) i^(n) =0`
=`(+i)i" "[:.(i^(4)^(3).i = i] `
=`(i^(2)+i)=i-1`
213.

Solve the equation :`27 x^2-10 x+1=0`

Answer» Correct Answer - `{(-5)/(27)+(sqrt(2))/(27)i,(-5)/(27)-(sqrt(2))/(27)i}`
214.

Solve: `2x^(2) - 4x + 3 = 0`

Answer» Correct Answer - `{1+(1)/(sqrt(2))i,1-(1)/(sqrt(2))i}`
215.

Solve: `2x^(2) + 1 = 0`

Answer» Correct Answer - `{(i)/(sqrt(2)),(-i)/(sqrt(2))}`
216.

Let `omega` be a complex number such that `2omega+1=z` where `z=sqrt(-3)`. If `|{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k`, then k is equal to

Answer» Here, `z = sqrt (-3) = sqrt3i`
`:. 2omega+1 = sqrt3i`
`=>omega = (sqrt3i-1)/2`
Now, we will find the value of the given determinant.
`|[1,1,1],[1,-omega^2-1,omega^2],[1,omega^2,omega^7]|`
Now, we know, `1+omega+omega^2 = 0` amd `omega^3 = 1`So, our determinant becomes,
`|[1,1,1],[1,omega,omega^2],[1,omega^2,omega]|`
`=[omega^2-omega^4-omega+omega^2+omega^2-omega]`
`=[omega^2-omega-omega+omega^2+omega^2-omega]`
`=3(omega^2 - omega)`
`=3(-1/2-(sqrt3i)/2 + 1/2 - (sqrt3i)/2))`
`= -3sqrt3i`
`:. -3sqrt3i = 3k`
`=> k = -sqrt3i`
`=> k = -z.`
217.

If `x^2+x+1=0` then the value of `(x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(x^27))^2` is

Answer» `1 + omega + omega^2 = 0`
`1 + x + x^2 = 0 `
`omega^3 = 1 , 1 + omega + omega^2 = 0`
`(x + 1/x)^2 + ( x^2 + 1/x^2)^2 + ....... (x^27 + 1/x^27)^2`
when `x= omega`
`( omega + omega^2/omega^3)^2 + ( omega^2 + omega/omega^3) + (1+1)^2 + ( omega + omega^2/omega^6)^2 + (omega^2 + omega/omega^6)^2 + (1+1)^2`
= `(-1)^2 + (-1)^2 + (2)^2 + (-1)^2 + (-1)^2 + (2)^2 `
`= 9[(-1)^2 + (-1)^2 + 2^2]`
`= 9 xx 6 = 54`
Answer
218.

Solve the equation : `3x^2-4x+(20)/3=0`

Answer» Correct Answer - `{(2)/(3)+(4)/(3)i,(2)/(3)-(4)/(3)i}`
219.

Solve: `x^(2) + 5 = 0`

Answer» Correct Answer - `{isqrt(5),-isqrt(5)}`
220.

If `omega` is a complex cube root of unity, then the value of the expression `1(2-omega)(2-omega^2)+2(3-omega)(3-omega^2) +...+(n-1) (n-omega)(n-omega^2) (n>=2) ` is equal to (A) `(n^2(n+1)^2)/4 - n` (B) `(n^2(n+1)^2)/4 +n` (C) `(n^2(n+1))/4 -n` (D) `(n(n+1)^2)/4 -n`

Answer» We can write the given expression as ,
`S = sum_(m=1)^n(m-1)(m-omega)(m-omega^2)`
So , general term in this expression can be given as,
`T_m = (m-1)(m-omega)(m-omega^2)`
`= (m-1)(m^2-(omega+omega^2)m+omega^3)`
As, `1+omega+omega^2 = 0=>omega+omega^2 = -1`
`:. T_m = (m-1)(m^2+m+1)` (As `omega^3 = 1`)
We know, `(a-1)(a^2+a+1) = a^3-1``:. T_m=m^3-1`
`:. S = sum_(m=1)^n (m^3-1) = sum_(m=1)^n m^3- sum_(m=1)^n 1`
`=> S= ((n(n+1))/2)^2+n = 1/4(n^2)(n+1)^2-n`
So, option `A` is the correct option.
221.

Solve: `x^(2) + 2 = 0`

Answer» Correct Answer - `{isqrt(2),-isqrt(2)}`
222.

Find the modulus and argument of the following complex number and henceexpress each of them in the polar form:` 1-i`

Answer» Correct Answer - `sqrt(2),(-pi)/(4),sqrt(2){cos((-pi)/(4))+i sin((-pi)/(4))}`
223.

If z is a complex number such that `|z|=4` and `arg(z) =(5pi)/6` then z is equal to

Answer» `z= |z|(e^(img(z)))`
`= 4(e^(i5 pi/6))`
`= 4(cos 5 pi/6 + i sin 5 pi/6)`
`= 4[cos(pi-pi/6) + i sin( pi - pi/6)]`
`= 4[- sqrt3/2 + i 1/2]`
`= 2[- sqrt3 + i]`
`z = - 2 sqrt 3 + 2i`
option 1 is correct
Answer
224.

The area bounded by the curves ` arg z = pi/3 and arg z = 2 pi /3 and arg(z-2-2isqrt3) = pi` in the argand plane is (in sq. units)

Answer» `arg(Z-(2+2sqrt3i))=pi`
`tantheta=(2sqrt3)/2=sqrt3`
Area=`1/2*(4)^2*2sqrt3`
`=4sqrt3Unit^2`.
225.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `(sin 120^(@) - i cos 120^(@))`

Answer» Correct Answer - `(cos 30^(@)+ i sin 30^(@))`
226.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: -i+i

Answer» Correct Answer - `sqrt(2),(3pi)/(4), sqrt(2)("cos"(3pi)/(4)+ "i sin"(3 pi)/(4))`
227.

Find the modulus and argument of the following complex number and henceexpress each of them in the polar form: ` sqrt(3)+i`

Answer» Correct Answer - `2,(pi)/(6),2("cos"(pi)/(6)+"i sin"(pi)/(6))`
228.

Find the modulus and argument of the following complex number and henceexpress each of them in the polar form: `(1-i)/(1+i)`

Answer» Correct Answer - `1,(-pi)/(2),{cos((-pi)/(2))+i sin((-pi)/(2))}`
229.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `1- sqrt(3)i`

Answer» Correct Answer - `2,(-pi)/(3),2{cos((-pi)/(3))+i sin((-pi)/(3))}`
230.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: 4

Answer» Correct Answer - `4, 0, 4(cos 0 + i sin 0)`
231.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: -i

Answer» Correct Answer - `1,(-pi)/(2),{cos((-pi)/(2)+i sin((-pi)/(2))}`
232.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `-1+sqrt(3)i`

Answer» Correct Answer - `2,(2pi)/(3),2("cos"(2pi)/(3)+"i sin"(2pi)/(3))`
233.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `(i^(25))^(3)`

Answer» Correct Answer - `1, (-pi)/(2),{cos((-pi)/(2))+i sin((-pi)/(2))}`
234.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `-4+4 sqrt(3)i`

Answer» Correct Answer - `8,(2pi)/(3)8{"cos"(2pi)/(3)+"i sin"(2pi)/(3)}`
235.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `(1+i)/(1-i)`

Answer» Correct Answer - `1,(pi)/(2),("cos"(pi)/(2)+"i sin"(pi)/(2))`
236.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: -2

Answer» Correct Answer - `2, pi, 2(cos pi + i sin pi)`
237.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `sqrt((1+i)/(1-i))`

Answer» Correct Answer - `1,(pi)/(4),("cos"(pi)/(4)+"i sin"(pi)/(4))`
238.

The complex number z having least positive argument which satisfy the condition `|z - 25i|

Answer» With the given condition `|z-25i| le 15`, we can draw a circle with center `(0,25)` and radius `15`.
Please refer to video for the figure.
From the figure, we can see that,
`P` point will have least positive argument.
Here, `CP = 15, OC = 25 and /_CPO = 90^@`
Then, `OP^2 =OC^2- CP^2 = 25^2-15^2 = 400`
`=>OP = 20`
Let `/_POC = theta`
Then, `sintheta = 15/25 = 3/5, cos theta = 20/25 = 4/5`
So, coordinates of point `P` will be `(OP sintheta,OPcostheta)`.
Coordinates of `P` are `(20(3/5),20(4/5))` that is `(12,16)`.
If we convert it into a complex number, then it will be `12+16i`, which is the required number.
239.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `(2+6 sqrt(3)i)/(5+sqrt(3)i)`

Answer» Correct Answer - `2,(pi)/(3),2("cos"(pi)/(3)+"i sin"(pi)/(3))`
240.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `-3 sqrt(2)+3 sqrt(2)i`

Answer» Correct Answer - `6,(3pi)/(4),6("cos"(3pi)/(4)+"i sin"(3pi)/(4))`
241.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `(5-i)/(2-3i)`

Answer» Correct Answer - `sqrt(2),(pi)/(4),sqrt(2)("cos"(pi)/(4)+ "i sin"(pi)/(4))`
242.

Evaluate `((i^(180)+i^(178)+i^(176)+i^(174)+i^(172))/(i^(170)+i^(168)+i^(166)+i^(164)+i^(162)))`.

Answer» Correct Answer - -1
Given expression `=(i^(172)(i^(8)+i^(6)+i^(4)+i^(2)+1))/(i^(162)(i^(8)+i^(6)+i^(4)+i^(2)+1))=i^((172-162))=i^(10)=i^(8)xxi^(2) = -1`.