Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Explain the fallacy : `-1 =(i xx i)=sqrt(-1)xx sqrt(-1) = sqrt((-1)xx(-1))=sqrt(1) = 1`.

Answer» We know that for any real numbers a and b, `sqrt(a) xx sqrt(b) = sqrt(ab)` is true only when at least one of a and b is either 0 or positive.
`therefore" "sqrt(-1) xx sqrt(-1) ne sqrt((-1)xx(-1))`.
102.

Show that the sum `(1 + i^(2) + i^(4)+....+i^(2n))` is 0 when n is odd and 1 when n is even.

Answer» Let `S = 1 + i^(2) + i^(4) +....+i^(2n)`.
This is clearly a GP having (n + 1) terms with a = 1 and r = `i^(2)` = -1.
`therefore" "S = (a(1-r^(n+1)))/((1+r))=(1xx{1-(i^(2))^(n+1)})/((1-i^(2)))`
`" "= ({1-(-1)^(n+1)})/(1-(-1))=({q-(-1)^(n+1)})/(2)`
`" "={{:((1)/(2)(1-1)=0",""when n is odd"),((1)/(2)(1+1)=1",""when n is even".):}`
103.

Evaluate: `sqrt(3+4sqrt(-7))`

Answer» Correct Answer - `(sqrt(7)+2i)or (-sqrt(7)-2i)`
104.

Evaluate `(i^(41)+(1)/(i^(71)))`.

Answer» Correct Answer - 2i
`(i^(41)+(1)/(i^(71)))=(i+(1)/(i^(3)))=(i+(1)/(i^(3))xx(i)/(i))=(i+i)=2i`.
105.

Show that `1+i^(10)+i^(20)+i^(30)`is a real number.

Answer» Given sum `=(1+i^(2)+1+i^(2))=0`.
106.

Show that `(1-i)^(n)(1-(1)/(i))^(n)=2^(n)` for all `n in N`

Answer» `(1-(1)/(i))=((i-1))/(i)xx(i)/(i)=((i^(2)-i))/(i^(2))=((-1-i))/(-1)=(1+i)`.
`therefore" ""given expression" = (1-i)^(n)xx(1+i)^(n)={(1-i)+(1+i)}^(2)=(1-i^(2))^(n)=2^(n)`.
107.

If |z| = 6 and arg(z) `=(3pi)/(4)`, find z.

Answer» Correct Answer - `z = 3 sqrt(2) (-1 + i)`
`z=6("cos"(3pi)/(4)+ "i sin"(3pi)/(4))=6{cos(pi-(pi)/(4))+i sin(pi-(pi)/(4))}`
`rArr" "z=6("-cos"(pi)/(4)+"i sin"(pi)/(4))=6((-1)/(sqrt(2))+i.(1)/(sqrt(2)))=(6)/(sqrt(2))(-1+i)`
`rArr" "z = 3 sqrt(2) (-1+i)`.
108.

If `z_1=2-i , z_2=1+i ,`find `|(z_1+z_2+1)/(z_1-z_2+i)|`

Answer» Correct Answer - `2 sqrt(2)`
`(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)=((2-i)+(1+i)+1)/((2-i)-(1+i)+i)=(4)/((1+i))xx((1-i))/((1-i))=2(1-i)`
`rArr" "|(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|=2 xx sqrt(1+(-1)^(2))=2sqrt(2)`.
109.

Find the sum (`i + i^(2) + i^(3) + i^(4) +.....` up to 400 terms).

Answer» Given sum `=(i+i^(2)+i^(3)+i^(4))+(i^(5)+i^(6)_i^(7)+i^(8))+.......`
`=(i+i^(2)+i^(3)+1)+i^(5)(1+i+i^(2)+i^(3))+....=0." "[because (1+i+i^(2)+i^(3))=0]`
110.

Evaluate: `sqrt(4i)`

Answer» Correct Answer - `sqrt(2)(1+i)or sqrt(2)(-1-i)`
111.

If `z = (sqrt(5)+3i)`, find `z^(-1)`.

Answer» Correct Answer - `((sqrt(5))/(14)-(3)/(14)i)`
`z^(-1)=(bar(z))/(|z|^(2))=((sqrt(5)-3i))/((5+9))=((sqrt(5))/(14)-(3)/(14)i)`.
112.

If `z = (1-i)`, find `z^(-1)`.

Answer» Correct Answer - `((1)/(2)+(1)/(2)i)`
`z^(-1)=(bar(z))/(|z|^(2))=((1+i))/((1^(2)+1^(2)))=((1)/(2)+(1)/(2)i)`.
113.

`" "(1+i)^(2)/(2-i)= x+ iy, "then find the value of x+y"`.

Answer» Given that , `" "(1+i)^(2)/(2-i)= x+ iy`
`rArr ((1+i^(2)+2))/(2-i)= x + iy rArr (2i)/(2-i) = x +iy`
`rArr (2i(2+i))/((2-i)(2+i))= x + iy rArr (4i+2-i^(2))/(4-i^(2)) = x +iy`
`rArr (4i-)/(4+1) = iy rArr (-2)/(5)+(4i)/(5) = x+iy`
On comparing both sides, we get
`x = 2//2 rArr y = 4/5`
`rArr" "x+y = (-2)/(5)+(4)/(5) = 2/5`
114.

if `a = costheta +i sin theta `, prove that `(1+a)/(1-a) = cot(theta/2)i`

Answer» `(1+a)/(1-a)=((1+cos theta)+ i sin theta)/((1-cos theta)- i sin theta)xx((1-cos theta)+ i sin theta)/((1-cos theta)+ i sin theta)`
`=((1-cos^(2)theta-sin^(2)theta)+2 i sin theta)/((1-cos theta)^(2)+ sin^(2) theta)=(1-(cos^(2)theta+sin^(2)theta)+2 i sin theta)/(1+(cos^(2)theta+sin^(2)theta)-2 cos theta)`
`=(2 i sin theta)/(2(1-cos theta))=(i sin theta)/((1-cos theta))=(2 sin (theta//2)cos (theta//2))/(2 sin^(2)(theta//2)).i = ("cot"(theta)/(2))i`.
115.

If `n in N ,`then find the value of `i^n+i^(n+1)+i^(n+2)+i^(n+3)dot`

Answer» Given sum `=i^(n) xx (1 + I + i^(2) + i^(3))=i^(n)(1+i-1-i)=0`.
116.

Prove that: `x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)`

Answer» Given expression `={(x+1)+i}" "{(x+1)-i}" "{(x-1)+i}" "{(x-1)-i}`
`= {(x+1)^(2)-i^(2)}" "{(x-1)^(2)-i^(2)}={(x+1)^(2)+1}" "{(x-1)^(2)+1}`
`={(x^(2)+2)+2x}" "{(x^(2)+2)-2x}`
`=(x^(2)+2)^(2)-4x^(2)=(x^(4)+4)`.
117.

Show that `(-sqrt(-1))^(4n+3) =i`, where n is a positive integer.

Answer» We have
`(-sqrt(-1))^(4n+3)=(-i)^(4n+3)" "[because sqrt(-1)=i]`
`=(-i)^(4n)xx(-i)^(3)`
`={(-i)^(4)}^(n) xx (-i^(3))=(1 xx i) = i" "[because (-i)^(4) = 1 and -i^(3) = -(-i) = i]`
Hence, `(-sqrt(-1))^(4n+3)=i`.
118.

What is the smallest positive integer `n`for which `(1+i)^(2n)=(1-i)^(2n)?`

Answer» Correct Answer - n = 2
`((1+i))/((1-i))=((1+i))/((1-i))=((1+i))/((1+i))=((1+i)^(2))/(2)=((1+i^(2)+2i))/(2)=(2i)/(2)=i`.
`therefore" "(1+i)^(2n)=(1-i)^(2n) rArr ((1+i)^(2n))/((1-i)^(2n))=1 rArr ((1+i)/(1-i))^(2n)=1 rArr i^(2n) = 1`.
Least value of 2n is 4 and so the least value of n is 2.
119.

`tan(ilog((a-ib)/(a+ib)))=`(i) `ab` (ii)`(2ab)/(a^2-b^2)` (iii) `(a^2-b^2)/(ab)` (iv) `(2ab)/(a^2+b^2)`

Answer» `a + ib = r e^(i theta)`
`r = sqrt(a^2 + b^2)`
`theta = tan^-1(b/a)`
`a - ib = r e^(- i theta) `
`i log ( (a-ib)/(a + ib)) = i log( (r e^(_i theta))/(r e^(i theta))) `
`= i log_e e^(-2 i theta) `
`= i(-2 i theta) `
`= 2 theta`
`2 tan^-1(b/a) `
`= tan^-1((2b/a)/(1- b^2/a^2)) = tan^-1((2ab)/(a^2- b^2))`
`tan( tan^-1((2ab)/(a^2 - b^2))) = (2ab)/(a^2 - b^2)`
option 2 is correct
120.

Evaluate `(1)/(i^(78))`.

Answer» Correct Answer - -1
`(1)/(i^(78))=(1)/(i^(78))xx(i^(2))/(i^(2))=-1" "[because i^(80)=(i^(4))^(20)=1]`
121.

Evaluate: `sqrt(1-i)`

Answer» Correct Answer - `{sqrt((sqrt(2)+1)/(2))}-{sqrt((sqrt(2)-1)/(2))}i or -{sqrt((sqrt(2)+1)/(2))}+{sqrt((sqrt(2)-1)/(2))}i`
Let `sqrt(1-i) = x -iy`.
On squaring both sides, we get
`(1-i)=(x-iy)^(2)=(x^(2)-y^(2))-i(2xy)`
`therefore" "(x^(2)-y^(2))=1 and 2xy = 1`
`rArr" "(x^(2)-y^(2))=sqrt((x^(2)-y^(2))^(2)+4x^(2)y^(2))=sqrt(1^(2)+1^(2))=sqrt(2)`
`rArr" "x^(2)-y^(2) = 1 and x^(2) + y^(2) = sqrt(2)`
`rArr" "x^(2)=(sqrt(2)+1)/(2) and y^(2)=(sqrt(2)-1)/(2)`
`rArr" "x = +- sqrt((sqrt(2)+1)/(2))and y = +- sqrt((sqrt(2)-1)/(2))`.
Since xy `gt` 0, so x and y have the same sign.
`therefore" "{x=sqrt((sqrt(2)+1)/(2)),y=sqrt((sqrt(2)-1)/(2))}or{x=-sqrt((sqrt(2)+1)/(2)),y=-sqrt((sqrt(2)-1)/(2))}`
`therefore" "sqrt(1-i)={sqrt((sqrt(2)+1)/(2))-sqrt((sqrt(2)-1)/(2))}or{-sqrt((sqrt(2)+1)/(2))+ isqrt((sqrt(2)-1)/(2))}`.
122.

Solve the following equation by factorizationmethod: `3x^2+7i x+6=0`

Answer» Correct Answer - `{(2)/(3)i, -3i}`
a = 3, b = 7i and c = 6.
`therefore" "(b^(2)-4ac)={(7i)^(2)-4xx3xx6}=(-49-72)=(-121)lt 0`.
So, the given equation has complex roots, given by
`(-b+-sqrt(b^(2)-4ac))/(2a)=(-7i+-sqrt(-121))/(2xx3)=(-7i+-11i)/(6)`.
Solution set `={(-7i+11i)/(6),(-7i-11i)/(6)}={(2)/(3)i,-3i}`
123.

lf `z(!=-1)` is a complex number such that `[z-1]/[z+1]` is purely imaginary, then `|z|` is equal to

Answer» Let z = (x + iy). Then,
`(z-1)/(z+1)=((x+iy)-1)/((x+iy)+1)=((x-1)+iy)/((x+1)+iy)xx((x+1)-iy)/((x+1)-iy)=((x^(2)+y^(2)-1)+2iy)/((x+1)^(2)+y^(2))`
`(z-1)/(z+1)` is purely imaginary `iff x^(2) - 1 = 0 iff x^(2) + y^(2) = 1 iff |z| = 1`.
124.

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: `((1-i))/(("cos"(pi)/(3)+"i sin"(pi)/(3)))`

Answer» Correct Answer - `sqrt(2),(7pi)/(12),sqrt(2)("cos"(7pi)/(12)-"i sin"(7pi)/(12))`
Given number `=(2(1-i))/((1+sqrt(3)i))xx((1-sqrt(3)i))/((1-sqrt(3)i))={((1-sqrt(3)))/(2)-((1+sqrt(3)))/(2)i}`
`therefore" "|z|^(2)=((1-sqrt(3))^(2))/(4)+((1+sqrt(3))^(2))/(4)=(2(1+3))/(4)=2 rArr |z| = sqrt(2)`.
`tan alpha=|((-(1+sqrt(3)))/(2))/(((1+sqrt(3)))/(2))|=((sqrt(3)+1))/((sqrt(3)-1))=((1+(1)/(sqrt(3))))/((1-(1)/(sqrt(3))))=("tan"(pi)/(4)+"tan"(pi)/(6))/(1-"tan"(pi)/(4)*"tan"(pi)/(6))`
`=tan((pi)/(4)+(pi)/(6))="tan"(5pi)/(12)`.
The given number z is represented by the point `P((-(sqrt(3)-1))/(2),(-(sqrt(3)+1))/(2))`
So, it lies in the third quadrant.
`therefore" "arg(z) = theta = -(pi- alpha)=-(pi-(5pi)/(12))=(-7pi)/(12)`.
Hence, `z=sqrt(2){cos((-7pi)/(12))+i sin((-7pi)/(12))}`.
125.

If `z_1`is a complex number other than -1 such that `|z_1|=1 a n d z_2=(z_1-1)/(z_1+1)`, then show that the real parts of `z_2`is zero.

Answer» Let `z_(1) = x_(1) + iy_(1)`. Then, `|z|=1 rArr |z_(1)|= 1 rArr |z_(1)|^(2) = 2 rArr x_(1)^(2) + y_(1)^(2) = 1`.
`z_(2)=(z_(1)-1)/(z_(1)+1)=((x_(1)+iy_(1))-1)/((x_(1)+iy_(1))+1)=((x_(1)-1)+iy_(1))/((x_(1)+1)+iy_(1))xx((x_(1)+1)-iy_(1))/((x_(1)+1)-iy_(1))`
`=((x_(1)^(2)+y_(1)^(2)-1)+2iy_(1))/((x_(1)+1)^(2)+y_(1)^(2))=(2iy_(1))/((x_(1)+1)^(2)+y_(1)^(2))`, which is purely imaginary. `" "[because |z_(1)|^(2)=1]`
126.

Find the modulus and argument of each of the following complex number: `-sqrt(3)-i`

Answer» Correct Answer - `2,(-5pi)/(6),2{cos((-5pi)/(6))+i sin((-5pi)/(6))}`
Let `z = -sqrt(3) - i rArr r^(2) = |z|^(2) = (-sqrt(3))^(2)+(-1)^(2)=4 rArr r = |z| = 2`.
`tan alpha=|(-1)/(-sqrt(3))|=(1)/(sqrt(3))rArr alpha = (pi)/(6)`.
The given number represents the point `P(-sqrt(3), -1)` which lies in the third quadrant.
`therefore" "arg(z)=theta=-(pi-alpha)=-(pi-(pi)/(6))=(-5pi)/(6)`.
`therefore" "z=2[cos((-5pi)/(6))+i sin((-5pi)/(6))]`.
127.

Show that a real value of `x`will satisfy hte equation `(1-i x)//(1+i x)=a-i b`if `a^2+b^2=1,w h e r ea ,b`real.

Answer» We have
`(1-ix)/(1+ix)=(a-ib)/(1)rArr((1-ix)+(1+ix))/((1-ix)-(1+ix))=((a-ib)+1)/((a-ib)-1)" "["by componendo and dividendo"]`
`rArr (2)/(-2ix)=((a+1)-ib)/((a-1)-ib)rArr -ix=((a-1)-ib)/((a+1)-ib)xx((a+1)+ib)/((a+1)+ib)`
`rArr -ix = ((a^(2)-1+b^(2))+{(a-1)b-(a+1)b}i)/((a+1)^(2)+b^(2))`
`=(-2bi)/((a+1)^(2)+b^(2))" "[because a^(2)+b^(2)=1]`
`rArr x=(2b)/((a+1)^(2)+b^(2))`, which is purely real.
128.

If `x+i y=sqrt((a+i b)/(c+i d))`prove that `(x^2+y^2)^2=(a^2+b^2)/(c^2+d^2)`

Answer» We have
`(x+iy)=sqrt((a+ib)/(c+id))=(sqrt(a+ib))/(sqrt(c+id))`
`rArr" "(x-iy)=(sqrt(a-ib))/(sqrt(c-id))`
`rArr" "(x+iy)(x-iy)=(sqrt(a+ib))/(sqrt(c+id))xx(sqrt(a-ib))/(sqrt(c-id))=(sqrt((a+ib)(a-ib)))/(sqrt((c+id)(c-id)))`
`rArr" "(x^(2)+y^(2))=(sqrt(a^(2)+b^(2)))/(sqrt(c^(2)+d^(2)))rArr (x^(2)+y^(2))^(2)=((a^(2)+b^(2)))/((c^(2)+d^(2)))`.
Hence, `(x^(2)+y^(2))^(2)=((a^(2)+b^(2)))/((c^(2)+d^(2)))`.
129.

If `(a + i b) (c + i d) (e + if) (g + i h) = A + i B`, then show that `(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=A^2+B^2`

Answer» `(a+ib)(c+id)(e+if)(g+ih)=(A+iB)`
`rArr" "|(a+ib)(c+id)(e+if)(g+ih)=|A+iB|`
`rArr" "|a+ib|*|"c+id"|*|"e+if"|*|g+ih|=|A+iB|`
`rArr" "|a+ib|^(2)*|"c+id"|^(2)*|"e+if"|^(2)*|g+ih|^(2)=|A+iB|^(2)`
`rArr" "(a^(2)+b^(2))(c^(2)+d^(2))(e^(2)+f^(2))(g^(2)+h^(2))=(A^(2)+B^(2))`.
Hence, `(a^(2)+b^(2))(c^(2)+d^(2))(e^(2)+f^(2))(g^(2)+h^(2))=(A^(2)+B^(2))`.
130.

Which of the following is correct for any tow complex numbers `z_1a n dz_2?``|z_1z_2|=|z_1||z_2|`(b) `a r g(z_1z_2)=a r g(z_1)a r g(z_2)`(c) `|z_1+z_2|=|z_1|+|z_2|`(d) `|z_1+z_2|geq|z_1|+|z_2|`A. `|z_(1) z_(2)| = | z_(1) ||z_(2)|`B. arg` (z _(1) z_(2)) = arg (z_(1). Arg (z_(2))`C. `|z_(1) + z_(2)| = |z_(1)|+|z_(2)|`D. `|z_(1) + z_(2) ge |z_(1)|- | z_(2)|`

Answer» Correct Answer - A
Let `z_(1) = r_(1) (costheta_(1) + isintheta_(1))`
`rArr |z_(1)| = r-(1) …(i) `
and `z_(2) = r_(2)(costheta_(2) + isin theta_(2)) `
`rArr |z_(2)| =r_(2) ...(ii)`
Now. ` z_(1) z_(2) = r_(1) r_(2) [costheta_(1) costheta_(2) + isin theta_(1) costheta_(2)+ icostheta_(1)isintheta_(2)+i^(2) sintheta_(1)sintheta_(2)]`
`=r_(1)r_(2) [cos(theta_(1) + theta_(2))+ isin(theta_(1) + theta_(2))]`
`rArr |z_(1)z_(2)| = r_(1)r_(2)`
`:. |z_(1)z_(2)| = |z_(1)||z_(1)| [using Eqa. (i) and (ii)]`
131.

If `((1 +i)/(1 -i))^(x) =1`, then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n` in`N.A. `x = 2n + 1`B. `x = 4n`C. `x = 2n`D. `x = 4n + 1`

Answer» Correct Answer - B
Given that, `((1 +i)/(1 -i))^(x) =1`
`rArr [((1 + i)(1+ i))/((1 -i)(1 +i))]^(x) = 1 rArr [(1 + 2i+ i^(2))/(1-i^(2))]^x = 1 `
`[(2i)/(1+1)]^(x) = 1 rArr [(2i)/(2)]^(x) = 1`
`rArr i^(x) = 1 rArr i^(x) = i^(4n) " " [:. i^(4n) = 1, n in N]`
`rArr x = 4n`
132.

The value of ` (z + 3) (barz + 3) ` is equivlent to(A) |z+3|^(2) (B) |z-3| (C) z^2+3 (D) none of theseA. `| z+ 3|^(2)`B. `|z -3|`C. `z^(2) +3`D. None of these

Answer» Correct Answer - A
Given that, `(z + 3)( barz + 3)`
Let z = x + iy
`rArr ( z + 3) (barz + 3) = ( x +iy + 3) (x + 3 - iy)`
`= (x + 3)^(2) - (iy) ^(2) = (x + 3)^(2) + y^(2)`
`= | x + 3 + iy|^(2) = | z + 3|^(2)`
133.

If `((z-1)/(z+1))` is purely an imaginary number and `z ne -1` then find the value of |z|.

Answer» Correct Answer - |z| = 1
Let z = x + iy. Then,
`(z-1)/(z+1)=((x-1)+iy)/((x+1)+iy)xx((x+1)-iy)/((x+1)-iy)=((x^(2)+y^(2)-1)+(x+y)i)/((x+1)^(2)+y^(2))`
Now, `(z-1)/(z+1)` is purely imaginary `iff x^(2) + y^(2) -1 = 0 iff x^(2) + y^(2) = 1 iff |z| = 1`.
134.

if `(1+i)z=(1-i)barz` then `z` is

Answer» `(1+i)z=(1-i)bar(z) rArr (z)/(bar(z))=((1-i))/((1+i))xx((1-i))/((1-i))=((1-i)^(2))/(2)=((1+i^(2)-2i))/(2)= -i`.
Hence, `z = -i bar(z)`.
135.

Solve : `x^(2)+3=0`.

Answer» We have
`x^(2)+3 = 0 = rArr x^(2) = -3 rArr x = +-sqrt(-3) = +- i sqrt(3)`.
`therefore" ""solution set"= {i sqrt(3), -i sqrt(3)}`.
136.

If a = `cos theta +theta i sin, "then find the value of" (1+a)/(1-a)`.

Answer» Givne that, `a = costheta + isintheta`
`:. (1+a)/(1-a) = (1+costheta+isintheta)/(1-costheta -i sintheta)`
= `(1+2cos^(2)theta//2 - 1+2isintheta//2.costheta/1-costheta //2)/(1-1+2sin^(2)theta//2-2isintheta//2.costheta//2)=(2costheta//2(costheta//2 + isintheta//2))/(2sintheta//2(sintheta//2-icostheta//2)) `
`=-(2costheta//2(costheta//2 + isintheta//2))/(2sintheta//2(sintheta//2-icostheta//2))= -(1)/(i)cot theta//2`
`(+i^(2))/(i)cottheta//2=icottheta//2" "[:.(-1)/(i)=(i^(2))/(i)]`
137.

Solve the equation:`x^2+3x+9=0`

Answer» The given equation is `x^(2)+3x+9=0`.
This is of the form `ax^(2)+bx+c=0`, where a = 1, b = 3 and c = 9.
`therefore" "(b^(2)-4ac)=(3^(2)-4xx1xx9)=(9-36)=27 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b+- sqrt(b^(2)-4ac))/(2a)=(-3 +- sqrt(-27))/(2xx1)" "[because b^(2)-4ac = -27]`
`=(-3 +- isqrt(27))/(2)=(-3 +- i3 sqrt(3))/(2)`
`therefore" ""solution set"={(-3+ i3 sqrt(3))/(2),(-3-i3 sqrt(3))/(2)}={(-3)/(2)+(3sqrt(3))/(2)i, (-3)/(2)-(3sqrt(3))/(2)i}`.
138.

Solve : `9x^(2) + 10x + 3 = 0`.

Answer» The given equation is `9x^(2)+10x+3=0`.
This is of the form `ax^(2)+bx+c=0`, Where a = 9, b = 10 and c = 3.
`therefore" "(b^(2)-4ac)={(10)^(2)-4xx9xx3}=(100-108)=-8 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b+- sqrt(b^(2)-4ac))/(2a)=(-10 +- sqrt(-8))/(2xx9)" "[because (b^(2)-4ac)=-8]`
`=(-10 +- i2 sqrt(2))/(18)=(-5+- i sqrt(2))/(9)`.
`therefore" ""solution set"={(-5+ i sqrt(2))/(9),(-5- i sqrt(2))/(9)}={(-5)/(9)+(sqrt(2))/(9)i, (-5)/(9)-(sqrt(2))/(9)i}`.
139.

Express of the complex number in the form `a + i b`.`(-2-1/3i)^3`

Answer» using the identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`(-2)^3 + (-1/3i)^2 + 3(-2)(-1/3i)(-2 - 1/3i)`
=`-8 -1/27i^3 + 2i(-2-1/3i)`
=`-8 + 1/27i - 4i -2/3i^2`
=`-8 + 1/27i - 4*27/27i - 2/3(-1)`
`= -8 + 2/3 + 1/29i -108/27i`
`=-22/3 - 107i/27`
`a=-22/3 & b= -107/27`
answer
140.

Find real values of `xa n dy`for which the complex numbers `-3+i x^2ya n dx^2+y+4i`are conjugate of each other.

Answer» Correct Answer - `(x =1, y = -4) or (x = -1, y = -4)`
`(-3+iyx^(2))=(bar(x^(2)+y+4i))`
`rArr" "(-3+iyx^(2))=(x^(2)+y-4i)`
`rArr" "(x^(2)+y+3)-(4+yx^(2))i = 0`
`rArr" "x^(2)+y+3=0 and 4 + yx^(2) = 0`
`rArr" "x^(2)+y = -3" "...(i)" "and yx^(2) = -4" "...(ii)`.
Putting `x^(2) = (-3-y)` from (i) in (ii), we get
`y(-3-y) = -4 rArr y^(2)+3y - 4 = 0 rArr (y+4)(y-1)=0 rArr y = -4 or y = 1`.
Now, `y = 1 rArr x^(2) = -4 rArr x` is imaginary. So, y `in` 1.
When y = -4, we get `x^(2) = (-3+4)=1 rArr x = +- 1`.
`therefore" "(x =1, y = -4) or (x = -1, y = -4)`.
141.

Reduce `(1/(1-4i)-2/(1+i))((3-4i)/(5+i))`to the standard form.

Answer» `z = (1/(1-4i)-2/(1+i))((3-4i)/(5+i))`
`=((1+i-2+8i)/((1-4i)(1+i)))((3-4i)/(5+i))`
`=((-1+9i)/(1+i-4i+4))((3-4i)/(5+i))`
`=((-1+9i)/(5-3i))((3-4i)/(5+i))`
`=((-1+9i)(3-4i))/((5-3i)(5+i))`
`=(-3+4i+27i-36i^2)/(25+5i-15i-3i^2)`
`=(-3+4i+27i+36)/(25+5i-15i+3)`
`=(33+31i)/(28-10i)**(28+10i)/(28+10i)`
`=(924+868i+330+310i^2)/(784-100i^2)`
`=(924+868i+330i-310)/(784+100)`
`=(614+1198i)/884`
`z = 307/442+599/442i`
142.

Solve the equation:`sqrt(2)x^2+x+sqrt(2)=0`

Answer» The given equation is `sqrt(2)x^(2) + x + sqrt(2) = 0`.
This is of the form `ax^(2)+bx+c=0`, where `a = sqrt(2), b = 1 and c = sqrt(2)`.
`therefore" "(b^(2)-4ac)=(1^(2)-4xx sqrt(2)xx sqrt(2))=(1-8) =-7 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b +- sqrt(b^(2)-4ac))/(2a)=(-1 +- sqrt(-7))/(2 sqrt(2))" "[because b^(2)-4ac = -7]`
`=(-1 +- i sqrt(7))/(2 sqrt(2))`.
`therefore" ""solution set"={(-1+i sqrt(7))/(2 sqrt(2)),(-1-i sqrt(7))/(2 sqrt(2))}={(-1)/(2 sqrt(2))+(sqrt(7))/(2 sqrt(2))i,(-1)/(2 sqrt(2))-(sqrt(7))/(2 sqrt(2))i}`.
143.

Solve : `3x^(2) + 8ix + 3 = 0`.

Answer» The given equation is `3x^(2)+8ix+3=0`.
This is of the form `ax^(2)+bx+c=0`, where a = 3, b = 8i and c = 3.
`therefore" "(b^(2)-4ac)={(8i)^(2)-4 xx 3 xx 3}=(-64-36)=-100 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b+- sqrt(b^(2)-4ac))/(2a)=(-8i+- sqrt(-100))/(2 xx 3)" "[because b^(2)-4ac=-100]`
`=(-8i+-10i)/(6)=(-4i+-5i)/(3)`.
Thus, the roots of the given equation are
`(-4i+5i)/(3)=(i)/(3)and(-4i+5i)/(3)=(-9i)/(3)=-3i`.
`therefore" ""solution set"={(i)/(3),-3i}`.
144.

If `((1-i)/(1+i))^(100)=a+i b , fin d (a , b)`

Answer» Correct Answer - `a = 1, b = 0`
`((1-i))/((1+i))=((1-i))/((1+i))xx((1-i))/((1-i))=((1-i)^(2))/(2)=((1+i^(2)-2i))/(2)= -i`.
`therefore" "((1-i)/(1+i))^(100)=(-i)^(100) ={(-i)^(4)}^(25)=(1)^(25)=1" "[because (-i)^(4) = i^(4) = 1]`.
Hence, a = 1 and b = 0.
145.

If `((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y , fin d (x , y)`

Answer» Correct Answer - `x = 0, y = -2`
`((1+i)/(1-i))=((1+i))/((1-i))xx((1+i))/((1+i))=((1+i)^(2))/(2)=((1+i^(2)+2i))/(2)=(2i)/(2)=i`.
Similarly, `((1-i)/(1+i)) = -i`.
Given expression `= i^(3) -(-i)^(3) = 2i^(3) = -2i^(3) = -2i = 0 + (-2)i`.
146.

Find the conjugate of `1/(3+4i)dot`

Answer» Correct Answer - `((3)/(25)+(4)/(25)i)`
`z=(1)/((3+4i))xx((3-4i))/((3-4i))=(3-4i)/(25)=((3)/(25)-(4)/(25)i) rArr bar(z) = ((3)/(25)+(4)/(25)i)`.
147.

Find the multiplicative inverse of the complex number. `4 - 3i`

Answer» let `4-3i= z`
`^-1 = 1/z = 1/(4-3i)`
`=1/(4-3i) * (4+3i)/(4+3i)`
=`(4+3i)/(16-(-9)= (4+3i)/25`
answer
148.

Solve the equation:`sqrt(3)x^2-sqrt(2)x+3sqrt(3)= 0`

Answer» The given equation is `sqrt(3)x^(2)-sqrt(2)x +3 sqrt(3) = 0`
This is of the form `ax^(2) + bx + c = 0`, where `a = sqrt(3), b = -sqrt(2) and c = 3 sqrt(3)`.
`therefore" "(b^(2)-4ac)={(-sqrt(2))^(2)-4 xx sqrt(3) xx 3 sqrt(3)}=(2-36)=-34 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b +- sqrt(b^(2)-4ac))/(2a)=(sqrt(2)+- sqrt(-34))/(2 xx sqrt(3))" "[because b^(2)-4ac=-34]`
`=(sqrt(2)+-i sqrt(34))/(2 sqrt(3))`
`therefore" ""solution set"={(sqrt(2)+i sqrt(34))/(2 sqrt(3)),(sqrt(2)-i sqrt(34))/(2 sqrt(3))}={(1)/(sqrt(6))+(sqrt(34))/(2 sqrt(3))i,(1)/(sqrt(6))-(sqrt(34))/(2 sqrt(3))i}`.
149.

If `x + i y =(a+i b)/(a-i b),`prove that `x^2+y^2=1`.

Answer» `(x+iy)=(a+ib)/(a-ib) rArr bar((x+iy))=((bar(a+ib)))/((bar(a-ib))) rArr (x-iy) = ((a-ib))/((a+ib))`.
`therefore" "(x+iy)(x-iy)=((a+ib))/((a-ib))xx((a-ib))/((a+ib))=1 rArr x^(2) + y^(2) = 1`.
150.

Evaluate: `sqrt(i)`

Answer» Correct Answer - `(1)/(sqrt(2))(1+i)or(1)/(sqrt(2))(-1-i)`