InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
If `f(x)={:{((x^(2)-3x+2)/(x-3)", for " 0 le x lt 4),((x^(2)-1)/(x-2)", for " 4 le x le 6):}`, then on [0, 6]A. f is continuous except at `x=2`B. f is continuous except at `x=3`C. f is continuous except at `x=4`D. f is continuous except at `x=3 "and " x=4` |
| Answer» Correct Answer - D | |
| 152. |
If `f(x)=(x^(3)-8)/(x^(2)+x-20)`, thenA. f is continuous on RB. f is continuous on R - (-5, 4)C. f is continuous on R - {-5, 4}D. f is continuous on R - [-5, 4] |
| Answer» Correct Answer - C | |
| 153. |
If `f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):}` , thenA. `f(|x|)` is continuous at `x=0`B. `f(x)` is discontinuous at `x=0`C. `f(x)` is continuous at `x=0`D. `f(|x|)` is discontinuous at `x=0` |
| Answer» Correct Answer - B | |
| 154. |
`f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","if",x ge 3):}` isA. f is continuous on its domain except at `x=-3`B. f is continuous on its domain except at `x=3`C. f is continuous on its domain except at `x=-3, 3`D. f is continuous on its domain |
| Answer» Correct Answer - C | |
| 155. |
Function `f(x)={(x-1",",x lt 2),(2x-3",", x ge 2):}` is a continuous functionA. for x = 2 onlyB. for all real values of xC. for all real values of x such that `x!=2`D. for all integral values of x only |
| Answer» Correct Answer - B | |
| 156. |
If `f(x)` is continuous at `x=1`, where `f(x)={:{(kx^(2)", for " x ge 1),(4", for " x lt 1):}`, then `k=`A. 2B. 4C. -2D. `pm2` |
| Answer» Correct Answer - B | |
| 157. |
If `f(x)={:{((sin2x)/(sqrt(1-cos2x))", for " 0 lt x le pi/2),((cos x)/(pi-2x)", for "pi/2 lt x le pi):}`A. f is continuous on its domain except `x=pi/2`B. f is continuous on its domainC. f is discontinuous on its domainD. f is continuous on its domain except `x=0` |
| Answer» Correct Answer - A | |
| 158. |
If `f(x)` is continuous at `x=0`, where `f(x)={:{(x^(2)+1", for " x ge 0),(2sqrt(x^(2)+1)+k ", for " x lt 0):}` , then `k=`A. 3B. -2C. -1D. 1 |
| Answer» Correct Answer - C | |
| 159. |
Find the value of k, if the functions are continuous at the points given against them : `{:(f(x)=(sqrt3-tan x)/(pi-3x)",","for" x nepi/3),(=k",","for" x=pi/3):}}at x=pi/3.`A. `(-2)/(3)`B. `2/3`C. `(-4)/(3)`D. `4/3` |
| Answer» Correct Answer - D | |
| 160. |
If `(x)=(1-sqrt3tanx)/(pi-6x),"for"x nepi/6` is continous at `x=pi/6, "find " f ((pi)/(6)).`A. `(1)/(3sqrt(3))`B. `(1)/(2sqrt(3))`C. `(2)/(3sqrt(3))`D. `(4)/(3sqrt(3))` |
| Answer» Correct Answer - C | |
| 161. |
The function `f(x)=(sin 2x)^(tan^(2)2x)` is not defined at `x=(pi)/(4)`. The value of `f(pi//4)`, so that f is continuous at `x=pi//4`, isA. `(1)/(sqrt(e))`B. `(-1)/(sqrt(e))`C. `sqrt(e)`D. `e^(-2)` |
| Answer» Correct Answer - A | |
| 162. |
If `f(x)` is continuous at `x=pi/4`, where `f(x)=(tan(pi/4 -x))/(cot 2x)`, for `x != pi/4`, then `f(pi/4)=`A. 2B. 1C. `1/2`D. `1/4` |
| Answer» Correct Answer - C | |
| 163. |
If `f(x)` is continuous at `x=(pi)/(4)` where `f(x)=(2sqrt(2)-(cos x+sin x)^(3))/(1-sin2x)` ,for `x!=(pi)/(4)` then `f((pi)/(4))=`A. `(3)/(sqrt(2))`B. `(sqrt(2))/(3)`C. `(1)/(sqrt(2))`D. `3sqrt(2)` |
| Answer» Correct Answer - A | |
| 164. |
`f(x) = {{:(("tan"(pi)/(4)+x)^(1//x)",",x ne 0),(k",",x = 0):}` for what value of k, f(x) is continuous at x = 0 ?A. eB. `e^(-1)`C. `e^(2)`D. `e^(-2)` |
| Answer» Correct Answer - C | |
| 165. |
If `f(x)` is continuous at `x=0`, where `f(x)={:{((sec^(2)x)^(cot^(2)x)", for " x!=0),(k", for " x=0):}`, then `k=`A. `1/e`B. `2/e`C. eD. 2e |
| Answer» Correct Answer - C | |
| 166. |
In order that the function `f(x)=(x+1)^(cotx)` is continuous at x = 0, f(0) must be defined asA. `f(0)=0`B. `f(0)=e`C. `f(0)=1/e`D. `f(0)=2/e` |
| Answer» Correct Answer - B | |
| 167. |
If `f(x)` is continuous at `x=pi/4`, where `f(x)=(1+cos 2x)^(4sec 2x)`, for `x!= pi/4`, then `f(pi/4)=`A. `e^(-4)`B. `e^(4)`C. `4e`D. e |
| Answer» Correct Answer - B | |
| 168. |
Differentiate tan-1(sinx/(1 + cosx)) w. r. t. x |
|
Answer» Let y = tan-1(sinx/(1 + cosx)) = tan-1((2sin(x/2) cos(x/2))/2cos2(x/2)) = tan-1(sin(x/2)/cos(x/2)) = tan-1(tan(x/2)) = x/2 Differentiating both sides w.r.t. x, we get dy/dx = 1/2 |
|
| 169. |
If `f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):}` is continuous, thenA. `(a pi)/(2)=b`B. `(b pi)/(2)=a_(a)`C. `a=b=pi/2`D. `a=b= pi/2 + 1` |
| Answer» Correct Answer - A | |
| 170. |
If f(x) is continuous at x=3, then `f(x)=ax+1," for x "le3` `=bx+3," for x "gt" 3 then "`A. `a+b=2/3`B. `a+b=(-2)/(3)`C. `a-b=2/3`D. `a-b=(-2)/(3)` |
| Answer» Correct Answer - C | |
| 171. |
If `alpha, beta` are the roots of `ax^(2)+bx+c=0` and `f(x)` is continuous at `x=alpha`, where `f(x)=(1-cos (ax^(2)+bx+c))/((x-alpha)^(2))`, for `x != alpha`, then `f(alpha)=` |
| Answer» Correct Answer - C | |
| 172. |
If the derivative of the function `f(x) ={ax^2+b , x lt -1 and bx^2 +ax+4,x leq -1` is everywhere continuous, then-A. `a=3, b=2`B. `a=2, b=3`C. `a=-2, b=-3`D. `a=-3, b=-2` |
| Answer» Correct Answer - B | |
| 173. |
If f(x) = \(\begin{cases} \frac{log(1+ax)-log(1-bx)}{x} &, \quad x ≠{0}\\ k&, \quad \text x =0 \end{cases} \)and f(x) is continuous at x = 0, then the value of k is :A. a – b B. a + b C. log a + log b D. none of these |
|
Answer» Option : (b) Formula : - (i) standard limit \(\lim\limits_{x \to 0}\frac{log(1-x)}{x}\) = 1 (ii) A function f(x) is said to be continuous at a point x=a of its domain, if \(\lim\limits_{x \to a}f(x)\) = f(a) \(\lim\limits_{x \to a^+}f(a+h)\) = \(\lim\limits_{x \to a^-}f(a-h)\) = f(a) (iii) \(\lim\limits_{x \to a}{\{f(x)±g(x)}\}\) = 1 ± m, Where \(\lim\limits_{x \to a}f(x)\) = 1, \(\lim\limits_{x \to a}g(x)\) = m Given :- f(x) =\(\begin{cases} \frac{log(1+ax)-log(1-bx)}{x} &, \quad x ≠{0}\\ k&, \quad \text x =0 \end{cases} \) And, f(x) is continuous at x = 0 \(\lim\limits_{x \to 0}\frac{log(1+ax)-log(1-bx)}{x} \) = k Using formula (ii), \(a\lim\limits_{x \to 0}\frac{log(1+ax)}{ax} \) - \(b\lim\limits_{x \to 0}\frac{log(1-bx)}{bx} \) = k Using formula (i), a + b = k |
|
| 174. |
Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2]. |
|
Answer» Given function is f(x) = x2 +2 x − 8, x ∈ [ −4, 2] Since, a polynomial function is continuous and derivable on R, therefore (i) f(x) is continuous on [− 4,2]. (ii) f(x) is derivable on (− 4,2). Also, f(− 4) = (− 4)2 + 2 (− 4) − 8 = 0 (since f (x) = x2 + 2x − 8) and f(2) = 22 + 2 x 2 – 8 = 0 ⇒ f(− 4) = f(2) This means that all the conditions of Rolle's theorem are satisfied by f(x) in [− 4,2]. Therefore, it exists at least one real c ∈ [ −4, 2] such that f′(c) = 0. Now, f (x) = x2 + 2x − 8 ⇒ f'(x) = d/dx(x2 + 2x - 8) = 2x + 2 Putting f′(c) = 0 ⇒ 2c + 2 = 0 ⇒ c = − 1. Thus, f′( −1) =0 and − 1 ∈ (− 4,2). Hence, Rolle's theorem is verified with c = − 1. |
|
| 175. |
Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4. |
|
Answer» Here, f(x) = x2 − 4x − 3, x ∈ [1, 4] which is a polynomial function, so it is continuous and derivable at all x ∈ R, therefore (i) f(x) is continuous on [1, 4] (ii) f(x) is derivable on (1, 4). Therefore, Conditions of Lagrange's theorem are satisfied on [1, 4]. Hence, there is atleast one real number. c ∈ (1, 4) such that Now, f'(x) = d/dx(x2 - 4x - 3) = 2x - 4 ⇒ f(4) = 42 - 4(4) - 3 = 16 - 16 - 3 = - 3 and f(1) = 1 - 4 - 3 = - 6 ∴ f'(c) =(f(4) - f(1))/(4 - 1) = (-3 - (-6))/3 = (-3 + 6)/3 = 1 ⇒ 2c - 4 = 1 ⇒ 2c = 1 + 4 = 5 ⇒ c = 5/2 ∈ (1, 4) |
|
| 176. |
Find \(\frac{dy}{dx}|_{x=\frac{\pi}{2}}\) , where y = esin x. |
|
Answer» We have, y = esin x ⇒ \(\frac{dy}{dx}=e^{sinx} .cosx\) ∴ \(\frac{dy}{dx}|_\frac{\pi}{2}=e^1 .0=0\) |
|
| 177. |
Differentiate: \(e^{x^3}\) |
|
Answer» y = \(e^{x^3}\) ∴ \(\frac{dy}{dx} = e^{x^3}\) x 3x2 x 1 = 3x2 . \(e^{x^3}\) |
|
| 178. |
Let `f(x)=(log(1+x/a)-log(1-x/b))/x , x!=0`. Find the value of `f`at `x=0`so that `f`becomes continuous at `x=0`. |
|
Answer» `lim_(x->0)f(x)=f(0)` `lim_(x->0)(log(1+(x/a))-log(1-(x/b)))/x` `lim_(x->0)((1/(1+(x/a)))*1/a-1/(1-(x/b))*-1/b)/1` `=1/1*1/a+1/1*1/b` `lim_(x->0)f(x)=1/a+1/b`. |
|
| 179. |
The value of a for which the function`f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0`may be continuous at `x=0`is1 (b) 2 (c) 3 (d)none of these |
|
Answer» `lim_(x->0) (4^x - 1)^3/(sin(x-a)log(1+3x)) = 12(log4)^3` now,`(e^(xln4) - 1)^3/(sin (x a)/(xa) xx log(1 + 3x^2))` `= 1 + (xln4)/1 + (x ln4)^2/(2!) + (xln4)^3/(3!)+ .....` `= ((1+ (xln4)/1 - 1)^3)/(ax log(1+3x^2)` `= (x^3(ln4)^3)/(ax log(1+3x^2)` `= (x^2(ln4))/(aln(1+3x^2) ` `= (ln4)^3/a xx x^2/(ln(1+3x^2))` `= (2x/1)/(1/(1+3x^2)) xx 6x` `= (2x)/(6x) = 1/3` now, `(log4)^3/(3a) = 12 xx (log 4)^3` `a= 1/(12 xx3) = 1/36` `a= 1/36` Answer |
|
| 180. |
Find the value of a for which the function `f`defined by`f(x)={asinpi/2(x+1),xlt=0(tanx-sinx)/(x^3),x >0"` is continous at x=0 |
|
Answer» `lim_(x->0^-)f(X)=lim_(x->o^+)f(x)=f(0)` LHL=RHL `=lim_(x->0^-)=lim_(x->0^+)f(x)` `=lim_(x->o^-)(asin(pi/2(x+pi)))=lim_(x->0^+)(tanx-sinx)/x^3` `a=lim_(x->o^+)(sec^2-cos)/(3x^2)` `=lim_(x->o^+)(2sec^2*secxtanx+sinx)/(6x)` `=lim_(x->0^+)sec^2x/3*tanx/x+lim_(x->0^+)1/6*sinx/x` `=1/3+1/6` `a=1/2`. |
|
| 181. |
Is every differentiable function continuous? Is every continuous function differentiable? |
|
Answer» Yes, every differentiable function is continuous. No, some continuous functions may not be differentiable. |
|
| 182. |
If`f(x)={(1-cos10x)/(x^2a),x0,x=0`then the value of a so that `f(x)`may be continuous at`x=0,i s`25 (b)`-1`(c) 1(d) indeterminate |
|
Answer» `lim_(x->0) (1-cos10x)/x^2` `lim_(x->0) (10(sin 10x))/(2x)` `lim_(x->0) (5sin10x)/x xx 10/10 = 50` `a=50` now,`lim_(x->0) (sqrtx)/(sqrt(625 + sqrtx) - 25)` `lim_(x->0) 2sqrt(625 + sqrtx)` `=50` option b is correct |
|
| 183. |
Differentiate: \(\sqrt{e^{\sqrt x}}\), x > 0 |
|
Answer» Let y = \(\sqrt{e^{\sqrt x}}\) ∴ \(\frac{dy}{dx} = \frac{1}{2\sqrt{e^\sqrt x}}\times\; e^\sqrt x \times \;\frac{1}{2\sqrt x}\) |
|