InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Write an example of a function which is everywhere continuous but fails to be differentiable exactly at five points. |
|
Answer» As we know that polynomial functions are always continuous and differentiable, we also know that the point of derivability is a sharp corner or a stop on the on going curve. Hence f(x) = │x│ is a function which is non-derivable at a point which is the sharp corner, at that point, there are more than one slopes possible due to this it is non-derivable but the modulus function is always continuous. So a function which is non derivable at exactly 5 points and continuous always is, f(x) = │x - 1│ + │x - 2│ + │x - 3│ + │x - 4│ + │x - 5│ this can be done by drawing the graph of the function or by algebraic method also. We can choose any value along with x in the modulus function as we only need the points. To draw the graph, we will solve the function by taking some points or intervals to open the modulus one by one. |
|
| 2. |
It is given that f'(a) exists, then \(\lim\limits_{x \to a} \frac{xf(a)-af(x)}{x-a}\) is …(a) f(a) – af'(a) (b) f ‘(a) (c) -f ‘(a) (d) f(a) + af ‘(a) |
|
Answer» Answer is (a) f(a) – af'(a) |
|
| 3. |
The derivative of f(x) = x|x| at x = -3 is …(a) 6 (b) -6 (c) does not exist (d) 0 |
|
Answer» (a) 6 f(x) = x|x| f(x) = x(-x) ⇒ f(x) = – x2 f ‘(x) = -(2x) f ‘(-3) = -(2) (-3) = 6 |
|
| 4. |
If f(x) = x + 2, then f'(f(x)) at x = 4 is …(a) 8 (b) 1 (c) 4 (d) 5 |
|
Answer» (b) 1 f(x) = x + 2 f'(x) = 1 f'(x) (at x = 4) = 1 |
|
| 5. |
If y = mx + c and f(0) = f'(0) = 1, then f(2) is …(a) 1 (b) 2 (c) 3 (d) -3 |
|
Answer» (c) 3 y = mx + c dy/dx = m y = x + c (i.e.) f(x) = x + c y(at x = 0) = f(0) 0 + c = 1 ⇒ c = 1 y = x + 1 ⇒ f(x) = x + 1 f(2) = 2 + 1 = 3 |
|
| 6. |
Find the derivatives of the function with respect to corresponding independent variables.y = ex sin x |
|
Answer» y = ex sin x ⇒ y = uv’ + vu’ Now u = ex ⇒ u’ = (du/dx) ex v = sin x ⇒ v’ = (dv/dx) = cos x i.e. y’ = ex (cos x) + sin x (ex) = ex [sin x + cos x] |
|
| 7. |
Find the derivatives of the function with respect to corresponding independent variables.(i) y = cos x – 2 tan x(ii) g(t) = t3 cos t |
|
Answer» (i) dy/dx = -sin x = 2 (sec2 x) = – sin x – 2 sec2 x (ii) g(t) = t3 cos t (i.e.) u = t3 and v = cos t Let u’ = du/dx and v’ = dv/dx = (-sin t) g'(t) = uv’ + vu’ g'(t) = t3 (-sin t) + cos t (3t2) = -t3 sin t + 3t2 cos t |
|
| 8. |
Find the derivatives of the function with respect to corresponding independent variables.g(t) = 4 sec t + tan t |
|
Answer» g(t) = 4 sec t + tan t g'(t) = 4(sec t tan t) + sec2 t = 4sec t tan t + sec2 t |
|
| 9. |
Find the derivatives of the function with respect to corresponding independent variables.(i) y = sin x + cos x(ii) f(x) = x sin x |
|
Answer» (i) dy/dx = cos x + (-sin x) = cos x – sin x (ii) f(x) = x sin x f(x) = uv ⇒ f'(x) = uv’ + vu’ = u(du/dx) + v(dv/dx) Now u = x ⇒ u’ = 1 v = sin x ⇒ v’ cos x f'(x) = x (cos x) + sin x(1) = x cos x + sin x |
|
| 10. |
Find the derivatives of the function with respect to corresponding independent variables. f(x) = x – 3 sin x |
|
Answer» f(x) = x – 3 sin x = f'(x) = 1 – 3(cos x) = 1 – 3 cos x |
|
| 11. |
Show that `f(x)=|x|`is not differentiable at `x=0.` |
|
Answer» `f(x)=|x|` `lim_(h->0) (f(x+h)-f(x))/h` `LHL=RHL` `LHL` when `x<0 , x=0` `f(x)=-x` `lim_(h->0) (f(0+h)-f(0))/h ` `=(-h-0)/h` `=-1` `RHL` when`x>0` `lim_(h->0) (f(0+h)-f(0))/h` `=(h+0)/h=1` `LHL=-1,RHL=1` `LHL&RHL`Both exits but not equal `LHL!=RHL` |
|
| 12. |
Find the derivation of function(3 sec x – 4 cosec x) (2 sin x + 5 cos x) |
|
Answer» y = (3 sec x – 4 cosec x) (2 sin x + 5cos x) Let u = 3 sec x-4 cosec x and v = 2 sin x + 5 cos x u’ = 3 (sec x tan x) – 4 (-cosec x cot x) ; v’ = 2 (cos x) + 5 (- sin x) u’ = 3 sec x tan x + 4 cosec x cot x); v’ = 2 cos x – 5 sin x. ∴ y’ = uv’ + vu' So dy/dx = (3 sec x – 4 cosec x) (2 cos x – 5 sin x) + (2 sin x + 5 cos x) (3 sec x tan x + 4 cosec x cot x) = 6 sec x cos x – 15 sec x sin x – 8 cosec x cos x + 20 cosec x sin x + 6 sin x sec x tan x + 8 sin x cosec x cot x + 15 cos x sec x tan x + 20 cos x cosec x cot x = 6 (1/cos x) cos x – 15 (1/cos x) sin x – 8 (1/sin x) cos x + 20 (1/sin x) sin x + 6 sin x (1/cos x) tan x + 8 sin x (1/sin x) cot x + 15 cos x (1/cos x) tan x + 20 cos x (1/sin x) cot x = 6 – 15 tan x – 8 cot x + 20 + 6 tan2 x + 8 cot x + 15 tan x + 20 cot2 x = 26 + 6 tan2 x + 20 cot2 x |
|
| 13. |
Differentiate y = sin3 x + cos3 x |
|
Answer» y = sin3 x + cos3 x Here u = sin3 x = (sin x)3 ⇒ du/dx = 3 (sin x)2 (cos x) = 3sin2 x cos x v = cos3 x = (cos x)3 ⇒ dv/dx = 3 (cos x)2 (-sin x) = -3 sin x cos2 x Now y = u + v ⇒ dy/dx = du/dx + dv/dx = 3 sin2 x cos x – 3sin x cos2 x = 3 sin x cos x (sin x – cos x) |
|
| 14. |
If y = etan^-1 x, show that (1 + x2) y” + (2x – 1) y’ = 0 |
|
Answer» y = etan^-1 x y = etan^-1 x 1/(1 + x2) ⇒ y’ = y/(1 + x2) ⇒ y'(1 + x2) = y Differentiating w.r.to x y’ (2x) + (1 + x2) (y”) = y’ (i.e.) (1 + x2) y” + y’ (2x) – y’ = 0 (i.e.) (1 + x2) y” + (2x – 1) y’ = 0 |
|
| 15. |
Find the derivation of function3 sin x + 4 cos x – ex |
|
Answer» y = 3 sin x + 4 cos x – ex dy/dx = 3 (cos x) + 4 (- sin x) – (ex) = 3 cos x – 4 sin x – ex |
|
| 16. |
Find the derivation of functionsin 5 + log10 x + 2 sec x |
|
Answer» y = sin 5 + log10 x + 2 sec x dy/dx = 0 + (1/x) log10 e + 2[sec x + tan x] = log10 e/x + 2 sec x tan x |
|
| 17. |
Differentiate(i) y = tan 3x(ii) y = cos (tan x) |
|
Answer» (i) y = tan 3x Put u = 3x du/dx = 3 Now y = tan u du/dx = sec2 u So dy/dx = (dy/du) x (du/dx) = sec2 u (3) = 3 sec2 3x (ii) y = cos (tan x) Put u = tan x du/dx = sec2 x Now y = cos u ⇒ du/dx = – sin u Now dy/dx = (dy/du) x (du/dx) = (-sin u) (sec2 x) = – sec2 (sin (tan x)) |
|
| 18. |
Find the derivation of function(3x2 + 1)2 |
|
Answer» y = (3x2 + 1)2 = (3x2 + 1) (3x2 + 1) Let u = 3x2 + 1 and v = 3x2 + 1 ∴ u’ = 3(2x) = 6x and v’ = 6x y’ = uv’ + vu’ (i.e.,) dy/dx = (3x2 + 1) (6x) + (3x2 + 1) 6x = 12x (3x2 + 1) |
|
| 19. |
Differentiate y = (x2 + 4x + 6)5 |
|
Answer» Let = u = x2 + 4x + 6 du/dx = 2x + 4 Now y = u5 dy/dx = 5u4 ∴ dy/dx = (dy/du) x (du/dx) = 5u4(2x + 4) = 5(x2 + 4x + 6)4 (2x + 4) = 5(2x + 4) (x2 + 4x + 6)4 |
|
| 20. |
Find the derivation of function(x4 – 6x3 + 7x2 + 4x + 2) (x3 – 1) |
|
Answer» Let u = x4 – 6x3 + 7x2 + 4x + 2 and v = x3 – 1 u’ = 4x3 – 6(3x2) + 7(2x) + 4(1) + 0 = 4x3 – 18x2 + 14x + 4 v’ = 3x3 y = uv’ + vu’ i.e. dy/dx = (x4 – 6x3 + 7x2 + 4x + 2) (3x2) + (x3 – 1) (4x3 – 18x2 + 14x + 4) = 3x6 – 18x5 + 21x4 + 12x3 + 6x2 + 4x6 – 18x5 + 14x4 + 4x3 – 4x3 + 18x2 – 14x – 4 = 7x6 – 36x5 + 35x4 + 12x3 + 24x2 – 14x – 4 |
|
| 21. |
Find the derivation of functionx2 ex sin x |
|
Answer» y = x2 ex sin x Let u = x2, v = ex and w = sin x u’ = 2x, v’ = ex and w’ = cos x y’ = uvw’ + vwu’ + uwv’ = (x2ex) cos x + (ex sin x)(2x) + (x2 sin x)ex = x2 ex cos x + 2xex sin x + x2 ex sin x = xex {x cos x + 2 sin x + x sin x} |
|
| 22. |
Find the derivatives of the function with respect to corresponding independent variables.y = e-x. log x |
|
Answer» y = e-x log x = uv (say) Here u = e-x and v = log x ⇒ u’ = -e-x and v’ = 1/x Now y = uv ⇒ y’ = uv’ + vu’ (i.e.) dy/dx = e-x (1/x) + log(-e-x) = e-x(1/x - log x) |
|
| 23. |
(d/dx)(ex + 5 log x) is ...(a) ex .x4 (x + 5) (b) ex .x (x + 5) (c) ex + (5/x)(d) ex - (5/x) |
|
Answer» (a) ex .x4 (x + 5) y = ex + 5 log x = ex.e5 log x = ex.elog x^5 = x5 ex ∴ dy/dx = x5 (ex) + ex (5x4) = ex.x4 (x + 5) |
|
| 24. |
If the derivative of (ax – 5)e3x at x = 0 is -13, then the value of a is … (a) 8 (b) -2 (c) 5 (d) 2 |
|
Answer» (d) 2 y = (ax – 5)e3x dy/dx = y’ = (ax – 5) (3e3x) + e3x (a) = e3x[3ax – 15 + a] Given dy/dx = -13 at x = 0 ⇒ [-15 + a] = -13 ⇒ a = -13 + 15 a = 2 |
|
| 25. |
If y = cos (sin x2), then dy/dx at x = √π/2 is ... (a) -2 (b) 2 (c) -2√π/2 (d) 0 |
|
Answer» Answer is (d) 0 y = cos (sin x2) dy/dx = – sin (sin x2) [cos (x2)] (2x) ∴ dy/dx at x = √π/2 = -sin (1) [0] = 0 |
|
| 26. |
Is every continuous function differentiable? |
|
Answer» No, a function may be continuous at a point but not differentiable at that point. For example, Function f(x)=|x| is continuous at x = 0 but not differentiable at x =0. |
|
| 27. |
Show that thefunction `f`defined asfollows`f(x)={3x-2 , 0ltxle1 ; 2x^2-x , 1ltxle2 ; 5x-4 , xgt2,`is continous at x=2 but not differentiable. |
|
Answer» `f(x)=f(x)=f(x^2)` `f(2^-)=lim_(h->0)(2(2-h)^2)-(2-h)` `=lim_(h->0)(2(4-4h+h^2)-2+h` `=lim_(h->0)(6-7h+2h^2)=6` `f(2^+)=lim_(h->o)(5(2+h)-4` `=10+5h-4=6` `f(x^-)=f(x)=f(x^2)` f(x) is continuous at x=2 LHD`=lim_(h->0)(f(2-h)-f(2))/(-h)` `=lim_(h->0)(6-7h+2h^2-6)/(-h)` `=7` RHD`lim_(h->0)(f(2+h)-f(2))/h` `=lim_(h->0)(6+5h-6)/h` `=5` LHD`!=`RHD f(x) is not different at x=2. |
|
| 28. |
Show that the function`f(x)={x^2sin(1/x),ifx!=0 0,ifx=0`is differentiable at `x=0`and `f^(prime)(0)=0` |
|
Answer» LHD=`lim_(h->0) ((-h)^2sin(-1/h) - 0)/(-h)` `lim_(h->0) (-h^2 sin(1/h))/(-h)` `= lim_(h->0) h xx sin(1/h)` `= 0` RHD=`lim_(h->0) (h^2sin(1/h) - 0)/h ` `= lim_(h->0) h xx sin(1/h)` `=0` RHD`=`LHD `:.` f(x) is diff at x= 0 Answer |
|
| 29. |
Discuss the continuityand differentiability of `f(x)=|log||x|dot` |
|
Answer» `|-x|=x` LHD=`lim_(h->0)(f(-1-h)-f(-1))/(-h)` `=lim_(h->0)(|log|-1-h|-log|-1||)/(-h)` `=lim_(h->0)(log(1+h)/(-h))` `=lim_(h->0)(h+(h^2/2))/(-h)=-1` RHD=`lim_(h-<0)(|log|-1+h|)/h` `=lim_(h->0)(-log(1-h)/h)` `=lim_(h->0)(-h+(h^2/2)-(h^3/3)....)/h(-1)` `=1` RHD=LHD. |
|
| 30. |
Discuss the differentiability of`f(x)={x e-(1/(|x|)+1/x),x!=0x ,x=0a tx=0` |
|
Answer» LHD=`lim_(x->0^-) (xe - (-1/x + 1/x) - 0)/(x-0) ` `= lim_(x->0^-) (xe)/x = e` RHD= `lim_(x->0^+) (xe- (1/x + 1/x) - 0)/(x-0)` `= lim_(x->0^+) (xe- 2/x)/x` `= lim_(x->0^+) (x^2e-2)/(x^2) = (0-2)/0 = -oo` LHD=`e` RHD=`-oo` LHD`!=`RHD `:.` f(x) is not differentiable Answer |
|