Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Find the values of each of the following:(i) 132(ii) 73(iii) 34

Answer»

(i) Given 132

13

= 13 × 13 

= 169

(ii) Given 73

73 

= 7 × 7 × 7 

= 343

(iii) Given 34

34 

= 3 × 3 × 3 × 3

= 81

102.

If a = \(b^{\frac23}\) and b = c–2, what is the value of a in terms of c ?(a) \(\frac{4}{c^3}\)(b) \(\sqrt[3]{c^4}\)(c) \(\frac{1}{\sqrt[3]{c^4}}\)(d) \(\sqrt[4]{c^3}\)

Answer»

(c) \(\frac{1}{\sqrt[3]{c^4}}\)

a = \(b^{\frac{2}{3}}\) and b = c-2

∴ a = (c-2)\({\frac{2}{3}}\) = c\(-\frac43\) \(\frac{1}{c^{\frac43}}\) = \(\frac{1}{\sqrt[3]{c^4}}\)

103.

 Simply:(i)  32 × 104(ii)  24 × 32(iii) 52 × 34

Answer»

(i)  Given 3× 104 

3× 104 

= 3 × 3 × 10 × 10 × 10 × 10

= 9 × 10000

= 90000

(ii) Given 24 × 32 

24 × 32 

= 2 × 2 × 2 × 2 × 3 × 3

= 16 × 9

= 144

(iii) Given 52 × 34 

52 × 34 

= 5 × 5 × 3 × 3 × 3 × 3

= 25 × 81

= 2025

104.

Find the value of each of the following:(i) (-7)2(ii) (-3)4(iii)  (-5)5

Answer»

(i) Given (-7)2

We know that (-a) even number= positive number

(-a) odd number = negative number

We have, (-7)2 

= (-7) × (-7)

= 49

(ii) Given (-3)4

We know that (-a) even number= positive number

(-a) odd number = negative number

We have, (-3)4 

= (-3) × (-3) × (-3) × (-3)

= 81

(iii) Given (-5)5

We know that (-a) even number= positive number

(-a) odd number = negative number

We have, (-5)5 

= (-5) × (-5) × (-5) × (-5) × (-5)

= -3125

105.

Write (625)-1/4 in decimal form.

Answer»

\(\frac{1}{({625)}^{\frac{1}{4}}}\) = \(\frac{1}{({5^4)}^{\frac{1}{4}}}\) = \(\frac{1}{5}\)

= 0.2

106.

Simplify (4/3)-3× (4/3)-2 and express a rational number.

Answer»

(4/3)-3× (4/3)-2

We have,

= (4/3) (-3+ (-2)) … [{(a/b) m × (a/b) n} = (a/b) m-n

= (4/3) (-3-2)

= (4/3)-5

= (3/4)5

= (35/45)

= 243/1024

107.

Simplify i. 31 × 32 × 33 × 34 × 35 × 36 ii. 22 × 33 × 24 × 35 × 36

Answer»

i. 31+2+3+4+5+6 = 321 

[am x an = am+n

ii. 22 × 33 × 24 × 35 × 36 [am x an = am+n

= 22+4 × 33+5+6 

= 26 × 314

108.

Simplify (-7/8)-3× (-7/8)2 and express a rational number.

Answer»

(-7/8)-3× (-7/8)2

We have,

= (-7/8) (-3+ 2) … [{(a/b) m × (a/b) n} = (a/b) m-n

= (-7/8) (-1)

= (-8/7)

109.

The value of \(\frac{5.(25)^{n+1}+25.(5)^{2n+1}}{25.(5)^{2n}-105(25)^{n-1}} \) is(a) 0 (b) 1 (c) \(6\frac14\)(d) \(5\frac14\)

Answer»

(c) \(6\frac14\)

Given exp. = \(\frac{5.(5^2)^{n+1}+5^2.5^{2n+1}}{5^2.5^{2n}-21\times5(5^2)^{n-1}} \)

\(\frac{5^{2n+3}+5^{2n+1}}{5^{2n+2}-21\times5^{2n-1}}\) = \(\frac{5^{2n+1}(5^2+1)}{5^{2n-1}(5^3-21)}\)

\(\frac{5^{(2n+1)-(2n-1)}\times26}{(125-21)}\) = \(\frac{5^2\times26}{104}=\frac{25}{4}=6\frac14.\)

110.

Simplify:(i) 3 × 102(ii) 22 × 53(iii) 33 × 52

Answer»

(i) Given 3 × 102

3 × 102 

= 3 × 10 × 10

= 3 × 100

= 300

(ii) Given 22 × 53

22 × 53 

= 2 × 2 × 5 × 5 × 5

= 4 × 125

= 500

(iii) Given 33 × 52

3× 52 

= 3 × 3 × 3 × 5 × 5

= 27 × 25

= 675

111.

Simplify (4/9)6× (4/9)-4 and express a rational number.

Answer»

(4/9)6× (4/9)-4

We have,

= (4/9) (6+ (-4)) … [{(a/b) m × (a/b) n} = (a/b) m-n

= (4/9) (6-4)

= (4/9)2

= (42/92)

= (16/81)

112.

Find x, if 8x–2 x \(\big(\frac12\big)^{4-3x}\) = (0.0625)x(a) 0 (b) 4 (c) 2 (d) 1

Answer»

(d) 1

 8x–2 \(\big(\frac12\big)^{4-3x}\) = (0.0625)x 

(23)x – 2 x (2–1)4–3x = \(\big(\frac{625}{10000}\big)^x\) 

⇒ 23x-6 x 2-4+3x\(\big(\frac{1}{16}\big)^x\) = (2-4)x = 2-4x

⇒ 23x-6-4+3x = 2-4x

⇒ 26x – 10 = 2– 4x 

⇒ 6x – 10 = – 4x 

⇒ 10x = 10 ⇒ x = 1.

113.

If \(5\sqrt5\times5^3÷5^{-\frac32} = 5^{a+2}\), then the value of a is(a) 4 (b) 5 (c) 6 (d) 8

Answer»

(a) 4

\(5\sqrt5\times5^3÷5^{-\frac32} = 5^{a+2}\)

⇒ \(5^{\frac32}\times5^3÷5^{-\frac32} = 5^{a+2}\)

⇒ \(5^{\frac32+3-(-\frac32)} = 5^{a+2}\)

⇒ 56 = 5a+2  ⇒ a + 2 = 6 ⇒ a = 4

114.

If 2x – 2x– 1 = 4, then what is the value of 2x + 2x– 1?(a) 8 (b) 12 (c) 10 (d) 16

Answer»

(b) 12

2x - 2x-1 = 4 ⇒ 2x -\(\frac{2^x}{2}\) = 4 

⇒ 2x\(\big(1-\frac12\big)\) = 4 ⇒ 2x\(\frac12\) = 4

⇒ 2x = 8 ⇒ 2x = 23 ⇒ x = 3

∴ 2x + 2x-1 = 23 + 22 = 8 + 4 = 12.

115.

The largest number among the following is(a) \(3^{2^{2^{2}}}\)(b) \(\{(3^2)^2\}^2\)(c) 32 × 32 × 32 (d) 3222

Answer»

(a)  \(3^{2^{2^{2}}}\) =  \(3^{2^{4}}\) = 316;

\(\{(3^2)^2\}^2 = 3^8 = 6561;\)

32 × 32 × 32 = 32 + 2 + 2 = 36 = 729 ;

∴ 316 > 38 > 3222 > 36

116.

Simplify {(-3/4)3-(-5/2)3} × 42 and express a rational number.

Answer»

{(-3/4)3-(-5/2)3} × 42

We have,

= {(-33/43)-(53/23)} × 16

= {(-27/64)-(-125/8)} × 16

First we find the difference of {(-27/64)-(125/8)}

LCM of 64 and 8 is 64

= (-27×1) / (64×1) = (-27/64)

= (125×8) / (8 ×8) = (1000/64)

= (1000- (-27))/64

= (1000+27)/64

= (973/64)

= (973/64) × 16

= (973/4)

117.

Simplify (2/3)2 × (-3/5)3 × (7/2)2 and express a rational number.

Answer»

(2/3)2 × (-3/5)× (7/2)2

We have,

(22/32) = (2×2)/ (3×3) = (4/9)

(-3/5)3= (-3×-3×-3) / (5×5×5) = (-27/125)

(72/22) = (7×7)/ (2×2) = (49/4)

Then,

= (4/9) × (-27/125) × (49/4)

= (4×-27×49) / (9× 125×4)

On simplifying,

= (1×-3×49) / (1×125×1)

= (-147/125)

118.

If 2 = 10m and 3 = 10n , then find the value of 0.15

Answer»

0.15 = \(\frac{1.5}{10}=\frac{3}{2\times10}=\frac{10^n}{10^m\times10}=\frac{10^n}{10^{m+1}}=10^{n-(m+1)}=10^{n-m-1}\)

119.

If 6x – 6x – 3 = 7740, then xx =(a) 7796 (b) 243 (c) 3125 (d) 46656

Answer»

(c) 3125

6x - 6x-3 = 7740 ⇒ 6x\(\frac{6^x}{6^3}\) = 7740

⇒ \(6^x\bigg(1-\frac{1}{216}\bigg)=7740 ⇒ 6^x\times \frac{215}{216}=7740\)

⇒ \(6^x = \frac{7740\times216}{215}\) = 36 x 216 = 65 ⇒ x = 5

∴ \(x^x = 5^5\) = 3125.

120.

Find the value of \((2^{\frac14}-1)(2^{\frac34}+2^{\frac12}+2^{\frac14}+1)\)(a) 2 (b) 3 (c) 5 (d) 1

Answer»

(d) 1

\(\bigg(2^{\frac14}-1\bigg)\bigg(2^{\frac34}+2^{\frac12}+2^{\frac14}+1\bigg)\)

Let \(2^{\frac14}\) = a . Then, 

Given exp. = (a – 1) (a3 + a2 + a + 1 ) 

= (a – 1) (a2 (a + 1) + 1(a + 1)) 

= (a – 1) (a + 1) (a2 + 1) = (a2 – 1) (a2 + 1) 

= a4 – 1

∴ Required value = \(\big(2^{\frac14}\big)^4\) -1 = 2 - 1 = 1.

121.

Simplify (3/2)4 × (1/5)2 and express a rational number.

Answer»

(3/2)4 × (1/5)2

We have,

(34/24) = (3×3×3×3)/ (2×2×2×2) = (81/16)

(12/52) = (1×1)/ (5×5) = (1/25)

Then,

= (81/16) × (1/25)

= (81×1) / (16/25)

= (81/400)

122.

Given, a = 2x , b = 4y , c = 8z and ac = b2 . Find the relation between x, y and z.

Answer»

ac = b2

⇒ 2x .8z = (4y)2 ⇒ 2x .(23)z = ((22)y)2 ⇒ 2x . 23z = 24y 

⇒ 2x+3z = 24y ⇒ x + 3z = 4y.

123.

If 3x + y = 81 and 81x – y = 3, then the value of x and y are(a) \(\frac{17}{8},\frac98\)(b) \(\frac{17}{8},\frac{15}{8}\)(c) \(\frac{17}{8},\frac{11}8\)(d) \(\frac{15}{8},\frac{11}8\)

Answer»

(b) \(\frac{17}{8}\)\(\frac{15}{8}\)

3x + y = 81 ⇒ 3x + y = 34 = x + y = 4     ... (i) 

81x – y = 3 ⇒ (34)x – y = 31

⇒ 4x – 4y = 1                     ... (ii) 

Eqn (i) × 4 + Eqn (ii) gives 

4x + 4y + 4x – 4y = 16 + 1 

⇒ 8x = 17 ⇒ x = \(\frac{17}{8}\) 

Putting x = \(\frac{17}{8}\) in (i), we get \(\frac{17}{8}\) + y = 4

⇒ y = 4 - \(\frac{17}{8}\) = \(\frac{15}{8}\)

∴ x = \(\frac{17}{8}\), y = \(\frac{15}{8}\).

124.

Which one of the following is not equal to \((\frac{100}{9})^{-\frac{3}{2}}\) ?A. \((\frac{100}{9})^{\frac{3}{2}}\)B. \(\frac{1}{{(\frac{100}{9})}^\frac{3}{2}}\)C. \(\frac{3}{10}\times\)\(\frac{3}{10}\times\)\(\frac{3}{10}\)D. \(\sqrt{\frac{100}{9}\times\frac{100}{9}\times\frac{100}{9}}\)

Answer»

1 / (100/9)3/2

= (10/3) -3/2 × 2

\(= \frac{3}{10}\)\(\times\frac{3}{10}\)\(\times\frac{3}{10}\)

125.

Which one of the following is not equal to \((\sqrt[3]8^{-\cfrac{1}{2}}\) ?A. \((\sqrt[3]2^{-\frac{1}{2}}\)B .8-1/6C. \(\cfrac{1}{({\sqrt[3]8)}^\frac{1}{2}}\)D. \(\frac{1}{\sqrt{2}}\)

Answer»

1 / (8)-1/2 × 1/3

= 2 -1/2

\(\frac{1}{\sqrt{2}}\)

126.

If \(\sqrt{3^n}\) = 81. Then, n is equal to (a) 2 (b) 4 (c) 6 (d) 8

Answer»

(d) 8

\(\sqrt{3^n}\) = 81 ⇒ 3n/2 = 34 ⇒ \(\frac{n}2\) = 4 ⇒ n = 8

127.

If 8x+1 = 64, what is the value of 32x+1?A. 1 B. 3 C. 9 D. 27

Answer»

8 x + 1 – 64 

= 8 x + 1 = 8

On equating powers, we get 

x + 1 = 2 

x = 1 

= 3 2x + 1 

= 33 = 27

128.

If (√3)5 x 92 = 3n x 3√3, then what is the value of n?

Answer»

Given, \(\bigg(3^{\frac12}\bigg)^5 \times(3^2)^2 =3^n\times3\times3^{\frac12}\)⇒ \(3^{\frac52}\times3^4=3^{n+1+\frac12}\)

⇒ \(3^{\frac52+4}=3^{n+\frac32}\) ⇒ \(3^{\frac{13}{2}}=3^{n+\frac32}\) ⇒ n+\(\frac32=\frac{13}{2}\) ⇒  n = \(\frac{13}{2}-\frac{3}{2} = \frac{10}2 = 5.\) 

129.

Simplify: (0.04)–1.5

Answer»

(0.04)–1.5 = (0.04)\(-\frac32\) = \(\frac{1}{(0.04)^{\frac32}}=\frac{1}{\sqrt{(0.04)3}}\) 

\(\frac{1}{(0.2)^3}=\frac{1}{0.008}=\frac{1000}{8}=125.\)

130.

When simplified (x -1 + y -1) -1 is equal to A. xy B. x + yC. \(\frac{xy}{x+y}\)D. \(\frac{x+y}{xy}\)

Answer»

(x -1 + y -1) -1

\((\frac{1}{x}+\frac{1}{y})^{-1}\)

\((\frac{x+y}{xy})^{-1}\)

\((\frac{xy}{x+y})\)

131.

Given that 100.48 = x and 100.70 = y and xz = y2 , then find the approximate value of z ?

Answer»

Given, xz = y⇒ (100.48)z ⇒ (100.70)2

⇒ 100.48z = 101.40 ⇒ 0.48z = 1.40 ⇒ z = \(\frac{140}{48} = \) 2.9 (approx)

132.

Simplify : \((100)^\frac12\times(0.001)^\frac13-(0.0016)^\frac14\times3^0+(\frac{5}{4})^{-1}\)

Answer»

Given exp. = (102)\(\frac12\) x \((\frac{1}{1000})^\frac13-(\frac{16}{1000})^\frac14\times3^0+(\frac54)^{-1}\)

= 102 x \(\frac12\) x \((\frac{1}{10})^{3\times\frac13} - (\frac{2}{10})^{4\times\frac14}\times3^0+\frac45\)

= 10 x \(\frac{1}{10}-\frac15+\frac45\) = 10 × 0.1 – 0.2 + 0.8 = 1 + 0.6 = 1.6.

133.

Which of the following is (are) not equal to \(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\)?A. \(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\)B.\(\cfrac{1}{\{(\cfrac{5}{6}){^\cfrac{1}{5}\}}^\cfrac{1}{6}}\)C. \((\cfrac{6}{5})^\frac{1}{30}\)D. \((\cfrac{5}{6})^{-\frac{1}{30}}\) 

Answer»

\(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\)

= 1 / {(5/6) 1/5} 1/5 

= (5/6) -1/30 

= (6/5) 1/30

134.

Express 940000000000 in standard form.

Answer»

940000000000

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

940000000000 = 9.4 × 1011

135.

The seventh root of x divided by the eighth root of x isA.xB,\(\sqrt{x}\)B.\(\sqrt[56]{x}\)C.\(\frac{1}{\sqrt[56]{x}}\)

Answer»

x 1/7 / x1/8 

= (x) 1/7 – 1/8 

= (x) 1/56

\(= \sqrt[56]{x}\)

136.

The square root of 64 divided by the cube root of 64 isA. 64 B. 2 C. \(\frac{1}{2}\)D. 642/3

Answer»

As 64 can be written as 64 = 2×2×2×2×2×2

so

64 = 26 \(\sqrt{64}\)

\(\sqrt(2^6)\) 

=(26) 1/2

= 2\(8\sqrt[3]{64}\)

= (26)1/3 

\(2^2\) = \(4\frac{\sqrt{64}}{\sqrt[3]{64}}\)

\(\frac{8}4\) = 2

137.

Evaluate: \(\frac{6^{\frac23}\times\sqrt[3]{6^7}}{\sqrt[3]{6^6}}\)

Answer»

Given exp. = \(\frac{6^{\frac23}\times6^{\frac73}}{6^{\frac63}}=6^{\frac23+\frac73-\frac63}=6^{\frac33}=6^1=6.\)

138.

If 9x+2 = 240 + 9x, then x = A. 0.5 B. 0.2 C. 0.4 D. 0.1

Answer»

9 x + 2 = 240 + 9

9x × 92 = 240 + 9x 

Let 9x = y 

81y = 240 + y 

80y = 240

y = \(\frac{240}{80}\)

9x = 3 

32x = 3 

2x = 1 

x = \(\frac{1}{2}\)

= 0.5

139.

Find the reciprocal of (-4)3.

Answer»

(-4)3

We know that the reciprocal of (a/b) m is (b/a) m

Then,

Reciprocal of (-4)3 is (-1/4)3

140.

Find the reciprocal of (6)7.

Answer»

(6)7

We know that the reciprocal of (a/b) m is (b/a) m

Then,

Reciprocal of (6)7 is (1/6)7

141.

Express (1/4)-4 as a rational number.

Answer»

 (1/4)-4

We know that,

= (1/4)-4 = (4/1)4 … [∵ (a/b)-n = (b/a) n]

= (44/14)

= (256/1)

= 256

142.

Express 82934000000 in standard form.

Answer»

82934000000

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

82934000000 = 8.2934 × 1010

143.

0.0000463 in standard form is A. 463 × 10–7 B. 4.63 × 10–5 C. 4.63 × 10–9 D. 46.3 × 10–6

Answer»

0.0000463 in standard form is written as: 

0.0000463 = 0.463 × 10-4 

= 4.63 × 10-5

144.

The product of the square root of x with the cube root of x is A. Cube root of the square root of x B. Sixth root of the fifth power of x C. Fifth root of the sixth power of x D. Sixth root of x

Answer»

\(\sqrt{x}\times\sqrt[3]{x}\)

= x1/2 × x1/3 

= x5/6

145.

Express (-3/4)-3 as a rational number.

Answer»

(-3/4)-3

We know that,

= (-3/4)-3 = (-4/3)3 … [∵ (a/b)-n = (b/a) n]

= (-43/33)

= (-64/27)

146.

Find the reciprocal of (3/8)4.

Answer»

(3/8)4

We know that the reciprocal of (a/b) m is (b/a) m

Then,

Reciprocal of (3/8)4 is (8/3)4

147.

Express 6428000 in standard form.

Answer»

6428000

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

6428000 = 6.428 × 106

148.

The value of x-yx-y when x = 2 and y = -2 is A. 18 B. -18 C. 14 D. -14

Answer»

x – y x – y 

= 2 – (-2)(2 + 2) 

= 2 – 16 

= - 14

149.

Express (-3)-1× (1/3)-1 as a rational number.

Answer»

(-3)-1× (1/3)-1

We know that,

= (-3)-1= (-1/3) [∵ (a/b)-n = (b/a) n]

= (1/3)-1 = (3/1)1 … [∵ (a/b)-n = (b/a) n]

= (-1/3) × (3/1)

= (-1×3)/ (3×1)

= (-3/3)

= -1

150.

Express (–2/3)-1 as a rational number.

Answer»

(–2/3)-1

We have:

(-2/3)-1 = (-2/3)-1

= (3/-2)1 … [∵ (a/b)-n = (b/a) n]

= (-3/2)