InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Find the values of each of the following:(i) 132(ii) 73(iii) 34 |
|
Answer» (i) Given 132 132 = 13 × 13 = 169 (ii) Given 73 73 = 7 × 7 × 7 = 343 (iii) Given 34 34 = 3 × 3 × 3 × 3 = 81 |
|
| 102. |
If a = \(b^{\frac23}\) and b = c–2, what is the value of a in terms of c ?(a) \(\frac{4}{c^3}\)(b) \(\sqrt[3]{c^4}\)(c) \(\frac{1}{\sqrt[3]{c^4}}\)(d) \(\sqrt[4]{c^3}\) |
|
Answer» (c) \(\frac{1}{\sqrt[3]{c^4}}\) a = \(b^{\frac{2}{3}}\) and b = c-2 ∴ a = (c-2)\({\frac{2}{3}}\) = c\(-\frac43\) = \(\frac{1}{c^{\frac43}}\) = \(\frac{1}{\sqrt[3]{c^4}}\) |
|
| 103. |
Simply:(i) 32 × 104(ii) 24 × 32(iii) 52 × 34 |
|
Answer» (i) Given 32 × 104 32 × 104 = 3 × 3 × 10 × 10 × 10 × 10 = 9 × 10000 = 90000 (ii) Given 24 × 32 24 × 32 = 2 × 2 × 2 × 2 × 3 × 3 = 16 × 9 = 144 (iii) Given 52 × 34 52 × 34 = 5 × 5 × 3 × 3 × 3 × 3 = 25 × 81 = 2025 |
|
| 104. |
Find the value of each of the following:(i) (-7)2(ii) (-3)4(iii) (-5)5 |
|
Answer» (i) Given (-7)2 We know that (-a) even number= positive number (-a) odd number = negative number We have, (-7)2 = (-7) × (-7) = 49 (ii) Given (-3)4 We know that (-a) even number= positive number (-a) odd number = negative number We have, (-3)4 = (-3) × (-3) × (-3) × (-3) = 81 (iii) Given (-5)5 We know that (-a) even number= positive number (-a) odd number = negative number We have, (-5)5 = (-5) × (-5) × (-5) × (-5) × (-5) = -3125 |
|
| 105. |
Write (625)-1/4 in decimal form. |
|
Answer» \(\frac{1}{({625)}^{\frac{1}{4}}}\) = \(\frac{1}{({5^4)}^{\frac{1}{4}}}\) = \(\frac{1}{5}\) = 0.2 |
|
| 106. |
Simplify (4/3)-3× (4/3)-2 and express a rational number. |
|
Answer» (4/3)-3× (4/3)-2 We have, = (4/3) (-3+ (-2)) … [{(a/b) m × (a/b) n} = (a/b) m-n = (4/3) (-3-2) = (4/3)-5 = (3/4)5 = (35/45) = 243/1024 |
|
| 107. |
Simplify i. 31 × 32 × 33 × 34 × 35 × 36 ii. 22 × 33 × 24 × 35 × 36 |
|
Answer» i. 31+2+3+4+5+6 = 321 [am x an = am+n] ii. 22 × 33 × 24 × 35 × 36 [am x an = am+n] = 22+4 × 33+5+6 = 26 × 314 |
|
| 108. |
Simplify (-7/8)-3× (-7/8)2 and express a rational number. |
|
Answer» (-7/8)-3× (-7/8)2 We have, = (-7/8) (-3+ 2) … [{(a/b) m × (a/b) n} = (a/b) m-n = (-7/8) (-1) = (-8/7) |
|
| 109. |
The value of \(\frac{5.(25)^{n+1}+25.(5)^{2n+1}}{25.(5)^{2n}-105(25)^{n-1}} \) is(a) 0 (b) 1 (c) \(6\frac14\)(d) \(5\frac14\) |
|
Answer» (c) \(6\frac14\) Given exp. = \(\frac{5.(5^2)^{n+1}+5^2.5^{2n+1}}{5^2.5^{2n}-21\times5(5^2)^{n-1}} \) = \(\frac{5^{2n+3}+5^{2n+1}}{5^{2n+2}-21\times5^{2n-1}}\) = \(\frac{5^{2n+1}(5^2+1)}{5^{2n-1}(5^3-21)}\) = \(\frac{5^{(2n+1)-(2n-1)}\times26}{(125-21)}\) = \(\frac{5^2\times26}{104}=\frac{25}{4}=6\frac14.\) |
|
| 110. |
Simplify:(i) 3 × 102(ii) 22 × 53(iii) 33 × 52 |
|
Answer» (i) Given 3 × 102 3 × 102 = 3 × 10 × 10 = 3 × 100 = 300 (ii) Given 22 × 53 22 × 53 = 2 × 2 × 5 × 5 × 5 = 4 × 125 = 500 (iii) Given 33 × 52 33 × 52 = 3 × 3 × 3 × 5 × 5 = 27 × 25 = 675 |
|
| 111. |
Simplify (4/9)6× (4/9)-4 and express a rational number. |
|
Answer» (4/9)6× (4/9)-4 We have, = (4/9) (6+ (-4)) … [{(a/b) m × (a/b) n} = (a/b) m-n = (4/9) (6-4) = (4/9)2 = (42/92) = (16/81) |
|
| 112. |
Find x, if 8x–2 x \(\big(\frac12\big)^{4-3x}\) = (0.0625)x(a) 0 (b) 4 (c) 2 (d) 1 |
|
Answer» (d) 1 8x–2 x \(\big(\frac12\big)^{4-3x}\) = (0.0625)x (23)x – 2 x (2–1)4–3x = \(\big(\frac{625}{10000}\big)^x\) ⇒ 23x-6 x 2-4+3x = \(\big(\frac{1}{16}\big)^x\) = (2-4)x = 2-4x ⇒ 23x-6-4+3x = 2-4x ⇒ 26x – 10 = 2– 4x ⇒ 6x – 10 = – 4x ⇒ 10x = 10 ⇒ x = 1. |
|
| 113. |
If \(5\sqrt5\times5^3÷5^{-\frac32} = 5^{a+2}\), then the value of a is(a) 4 (b) 5 (c) 6 (d) 8 |
|
Answer» (a) 4 \(5\sqrt5\times5^3÷5^{-\frac32} = 5^{a+2}\) ⇒ \(5^{\frac32}\times5^3÷5^{-\frac32} = 5^{a+2}\) ⇒ \(5^{\frac32+3-(-\frac32)} = 5^{a+2}\) ⇒ 56 = 5a+2 ⇒ a + 2 = 6 ⇒ a = 4 |
|
| 114. |
If 2x – 2x– 1 = 4, then what is the value of 2x + 2x– 1?(a) 8 (b) 12 (c) 10 (d) 16 |
|
Answer» (b) 12 2x - 2x-1 = 4 ⇒ 2x -\(\frac{2^x}{2}\) = 4 ⇒ 2x\(\big(1-\frac12\big)\) = 4 ⇒ 2x x \(\frac12\) = 4 ⇒ 2x = 8 ⇒ 2x = 23 ⇒ x = 3 ∴ 2x + 2x-1 = 23 + 22 = 8 + 4 = 12. |
|
| 115. |
The largest number among the following is(a) \(3^{2^{2^{2}}}\)(b) \(\{(3^2)^2\}^2\)(c) 32 × 32 × 32 (d) 3222 |
|
Answer» (a) \(3^{2^{2^{2}}}\) = \(3^{2^{4}}\) = 316; \(\{(3^2)^2\}^2 = 3^8 = 6561;\) 32 × 32 × 32 = 32 + 2 + 2 = 36 = 729 ; ∴ 316 > 38 > 3222 > 36 |
|
| 116. |
Simplify {(-3/4)3-(-5/2)3} × 42 and express a rational number. |
|
Answer» {(-3/4)3-(-5/2)3} × 42 We have, = {(-33/43)-(53/23)} × 16 = {(-27/64)-(-125/8)} × 16 First we find the difference of {(-27/64)-(125/8)} LCM of 64 and 8 is 64 = (-27×1) / (64×1) = (-27/64) = (125×8) / (8 ×8) = (1000/64) = (1000- (-27))/64 = (1000+27)/64 = (973/64) = (973/64) × 16 = (973/4) |
|
| 117. |
Simplify (2/3)2 × (-3/5)3 × (7/2)2 and express a rational number. |
|
Answer» (2/3)2 × (-3/5)3 × (7/2)2 We have, (22/32) = (2×2)/ (3×3) = (4/9) (-3/5)3= (-3×-3×-3) / (5×5×5) = (-27/125) (72/22) = (7×7)/ (2×2) = (49/4) Then, = (4/9) × (-27/125) × (49/4) = (4×-27×49) / (9× 125×4) On simplifying, = (1×-3×49) / (1×125×1) = (-147/125) |
|
| 118. |
If 2 = 10m and 3 = 10n , then find the value of 0.15 |
|
Answer» 0.15 = \(\frac{1.5}{10}=\frac{3}{2\times10}=\frac{10^n}{10^m\times10}=\frac{10^n}{10^{m+1}}=10^{n-(m+1)}=10^{n-m-1}\) |
|
| 119. |
If 6x – 6x – 3 = 7740, then xx =(a) 7796 (b) 243 (c) 3125 (d) 46656 |
|
Answer» (c) 3125 6x - 6x-3 = 7740 ⇒ 6x - \(\frac{6^x}{6^3}\) = 7740 ⇒ \(6^x\bigg(1-\frac{1}{216}\bigg)=7740 ⇒ 6^x\times \frac{215}{216}=7740\) ⇒ \(6^x = \frac{7740\times216}{215}\) = 36 x 216 = 65 ⇒ x = 5 ∴ \(x^x = 5^5\) = 3125. |
|
| 120. |
Find the value of \((2^{\frac14}-1)(2^{\frac34}+2^{\frac12}+2^{\frac14}+1)\)(a) 2 (b) 3 (c) 5 (d) 1 |
|
Answer» (d) 1 \(\bigg(2^{\frac14}-1\bigg)\bigg(2^{\frac34}+2^{\frac12}+2^{\frac14}+1\bigg)\) Let \(2^{\frac14}\) = a . Then, Given exp. = (a – 1) (a3 + a2 + a + 1 ) = (a – 1) (a2 (a + 1) + 1(a + 1)) = (a – 1) (a + 1) (a2 + 1) = (a2 – 1) (a2 + 1) = a4 – 1 ∴ Required value = \(\big(2^{\frac14}\big)^4\) -1 = 2 - 1 = 1. |
|
| 121. |
Simplify (3/2)4 × (1/5)2 and express a rational number. |
|
Answer» (3/2)4 × (1/5)2 We have, (34/24) = (3×3×3×3)/ (2×2×2×2) = (81/16) (12/52) = (1×1)/ (5×5) = (1/25) Then, = (81/16) × (1/25) = (81×1) / (16/25) = (81/400) |
|
| 122. |
Given, a = 2x , b = 4y , c = 8z and ac = b2 . Find the relation between x, y and z. |
|
Answer» ac = b2 ⇒ 2x .8z = (4y)2 ⇒ 2x .(23)z = ((22)y)2 ⇒ 2x . 23z = 24y ⇒ 2x+3z = 24y ⇒ x + 3z = 4y. |
|
| 123. |
If 3x + y = 81 and 81x – y = 3, then the value of x and y are(a) \(\frac{17}{8},\frac98\)(b) \(\frac{17}{8},\frac{15}{8}\)(c) \(\frac{17}{8},\frac{11}8\)(d) \(\frac{15}{8},\frac{11}8\) |
|
Answer» (b) \(\frac{17}{8}\), \(\frac{15}{8}\) 3x + y = 81 ⇒ 3x + y = 34 = x + y = 4 ... (i) 81x – y = 3 ⇒ (34)x – y = 31 ⇒ 4x – 4y = 1 ... (ii) Eqn (i) × 4 + Eqn (ii) gives 4x + 4y + 4x – 4y = 16 + 1 ⇒ 8x = 17 ⇒ x = \(\frac{17}{8}\) Putting x = \(\frac{17}{8}\) in (i), we get \(\frac{17}{8}\) + y = 4 ⇒ y = 4 - \(\frac{17}{8}\) = \(\frac{15}{8}\) ∴ x = \(\frac{17}{8}\), y = \(\frac{15}{8}\). |
|
| 124. |
Which one of the following is not equal to \((\frac{100}{9})^{-\frac{3}{2}}\) ?A. \((\frac{100}{9})^{\frac{3}{2}}\)B. \(\frac{1}{{(\frac{100}{9})}^\frac{3}{2}}\)C. \(\frac{3}{10}\times\)\(\frac{3}{10}\times\)\(\frac{3}{10}\)D. \(\sqrt{\frac{100}{9}\times\frac{100}{9}\times\frac{100}{9}}\) |
|
Answer» 1 / (100/9)3/2 = (10/3) -3/2 × 2 \(= \frac{3}{10}\)\(\times\frac{3}{10}\)\(\times\frac{3}{10}\) |
|
| 125. |
Which one of the following is not equal to \((\sqrt[3]8^{-\cfrac{1}{2}}\) ?A. \((\sqrt[3]2^{-\frac{1}{2}}\)B .8-1/6C. \(\cfrac{1}{({\sqrt[3]8)}^\frac{1}{2}}\)D. \(\frac{1}{\sqrt{2}}\) |
|
Answer» 1 / (8)-1/2 × 1/3 = 2 -1/2 = \(\frac{1}{\sqrt{2}}\) |
|
| 126. |
If \(\sqrt{3^n}\) = 81. Then, n is equal to (a) 2 (b) 4 (c) 6 (d) 8 |
|
Answer» (d) 8 \(\sqrt{3^n}\) = 81 ⇒ 3n/2 = 34 ⇒ \(\frac{n}2\) = 4 ⇒ n = 8 |
|
| 127. |
If 8x+1 = 64, what is the value of 32x+1?A. 1 B. 3 C. 9 D. 27 |
|
Answer» 8 x + 1 – 64 = 8 x + 1 = 82 On equating powers, we get x + 1 = 2 x = 1 = 3 2x + 1 = 33 = 27 |
|
| 128. |
If (√3)5 x 92 = 3n x 3√3, then what is the value of n? |
|
Answer» Given, \(\bigg(3^{\frac12}\bigg)^5 \times(3^2)^2 =3^n\times3\times3^{\frac12}\)⇒ \(3^{\frac52}\times3^4=3^{n+1+\frac12}\) ⇒ \(3^{\frac52+4}=3^{n+\frac32}\) ⇒ \(3^{\frac{13}{2}}=3^{n+\frac32}\) ⇒ n+\(\frac32=\frac{13}{2}\) ⇒ n = \(\frac{13}{2}-\frac{3}{2} = \frac{10}2 = 5.\) |
|
| 129. |
Simplify: (0.04)–1.5 |
|
Answer» (0.04)–1.5 = (0.04)\(-\frac32\) = \(\frac{1}{(0.04)^{\frac32}}=\frac{1}{\sqrt{(0.04)3}}\) = \(\frac{1}{(0.2)^3}=\frac{1}{0.008}=\frac{1000}{8}=125.\) |
|
| 130. |
When simplified (x -1 + y -1) -1 is equal to A. xy B. x + yC. \(\frac{xy}{x+y}\)D. \(\frac{x+y}{xy}\) |
|
Answer» (x -1 + y -1) -1 = \((\frac{1}{x}+\frac{1}{y})^{-1}\) = \((\frac{x+y}{xy})^{-1}\) = \((\frac{xy}{x+y})\) |
|
| 131. |
Given that 100.48 = x and 100.70 = y and xz = y2 , then find the approximate value of z ? |
|
Answer» Given, xz = y2 ⇒ (100.48)z ⇒ (100.70)2 ⇒ 100.48z = 101.40 ⇒ 0.48z = 1.40 ⇒ z = \(\frac{140}{48} = \) 2.9 (approx) |
|
| 132. |
Simplify : \((100)^\frac12\times(0.001)^\frac13-(0.0016)^\frac14\times3^0+(\frac{5}{4})^{-1}\) |
|
Answer» Given exp. = (102)\(\frac12\) x \((\frac{1}{1000})^\frac13-(\frac{16}{1000})^\frac14\times3^0+(\frac54)^{-1}\) = 102 x \(\frac12\) x \((\frac{1}{10})^{3\times\frac13} - (\frac{2}{10})^{4\times\frac14}\times3^0+\frac45\) = 10 x \(\frac{1}{10}-\frac15+\frac45\) = 10 × 0.1 – 0.2 + 0.8 = 1 + 0.6 = 1.6. |
|
| 133. |
Which of the following is (are) not equal to \(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\)?A. \(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\)B.\(\cfrac{1}{\{(\cfrac{5}{6}){^\cfrac{1}{5}\}}^\cfrac{1}{6}}\)C. \((\cfrac{6}{5})^\frac{1}{30}\)D. \((\cfrac{5}{6})^{-\frac{1}{30}}\) |
|
Answer» \(\{(\cfrac{5}{6})^{\cfrac{1}{5}}\}^{-\cfrac{1}{6}}\) = 1 / {(5/6) 1/5} 1/5 = (5/6) -1/30 = (6/5) 1/30 |
|
| 134. |
Express 940000000000 in standard form. |
|
Answer» 940000000000 A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer. Then, 940000000000 = 9.4 × 1011 |
|
| 135. |
The seventh root of x divided by the eighth root of x isA.xB,\(\sqrt{x}\)B.\(\sqrt[56]{x}\)C.\(\frac{1}{\sqrt[56]{x}}\) |
|
Answer» x 1/7 / x1/8 = (x) 1/7 – 1/8 = (x) 1/56 \(= \sqrt[56]{x}\) |
|
| 136. |
The square root of 64 divided by the cube root of 64 isA. 64 B. 2 C. \(\frac{1}{2}\)D. 642/3 |
|
Answer» As 64 can be written as 64 = 2×2×2×2×2×2 so 64 = 26 \(\sqrt{64}\) = \(\sqrt(2^6)\) =(26) 1/2 = 23 = \(8\sqrt[3]{64}\) = (26)1/3 = \(2^2\) = \(4\frac{\sqrt{64}}{\sqrt[3]{64}}\) = \(\frac{8}4\) = 2 |
|
| 137. |
Evaluate: \(\frac{6^{\frac23}\times\sqrt[3]{6^7}}{\sqrt[3]{6^6}}\) |
|
Answer» Given exp. = \(\frac{6^{\frac23}\times6^{\frac73}}{6^{\frac63}}=6^{\frac23+\frac73-\frac63}=6^{\frac33}=6^1=6.\) |
|
| 138. |
If 9x+2 = 240 + 9x, then x = A. 0.5 B. 0.2 C. 0.4 D. 0.1 |
|
Answer» 9 x + 2 = 240 + 9x 9x × 92 = 240 + 9x Let 9x = y 81y = 240 + y 80y = 240 y = \(\frac{240}{80}\) 9x = 3 32x = 3 2x = 1 x = \(\frac{1}{2}\) = 0.5 |
|
| 139. |
Find the reciprocal of (-4)3. |
|
Answer» (-4)3 We know that the reciprocal of (a/b) m is (b/a) m Then, Reciprocal of (-4)3 is (-1/4)3 |
|
| 140. |
Find the reciprocal of (6)7. |
|
Answer» (6)7 We know that the reciprocal of (a/b) m is (b/a) m Then, Reciprocal of (6)7 is (1/6)7 |
|
| 141. |
Express (1/4)-4 as a rational number. |
|
Answer» (1/4)-4 We know that, = (1/4)-4 = (4/1)4 … [∵ (a/b)-n = (b/a) n] = (44/14) = (256/1) = 256 |
|
| 142. |
Express 82934000000 in standard form. |
|
Answer» 82934000000 A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer. Then, 82934000000 = 8.2934 × 1010 |
|
| 143. |
0.0000463 in standard form is A. 463 × 10–7 B. 4.63 × 10–5 C. 4.63 × 10–9 D. 46.3 × 10–6 |
|
Answer» 0.0000463 in standard form is written as: 0.0000463 = 0.463 × 10-4 = 4.63 × 10-5 |
|
| 144. |
The product of the square root of x with the cube root of x is A. Cube root of the square root of x B. Sixth root of the fifth power of x C. Fifth root of the sixth power of x D. Sixth root of x |
|
Answer» \(\sqrt{x}\times\sqrt[3]{x}\) = x1/2 × x1/3 = x5/6 |
|
| 145. |
Express (-3/4)-3 as a rational number. |
|
Answer» (-3/4)-3 We know that, = (-3/4)-3 = (-4/3)3 … [∵ (a/b)-n = (b/a) n] = (-43/33) = (-64/27) |
|
| 146. |
Find the reciprocal of (3/8)4. |
|
Answer» (3/8)4 We know that the reciprocal of (a/b) m is (b/a) m Then, Reciprocal of (3/8)4 is (8/3)4 |
|
| 147. |
Express 6428000 in standard form. |
|
Answer» 6428000 A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer. Then, 6428000 = 6.428 × 106 |
|
| 148. |
The value of x-yx-y when x = 2 and y = -2 is A. 18 B. -18 C. 14 D. -14 |
|
Answer» x – y x – y = 2 – (-2)(2 + 2) = 2 – 16 = - 14 |
|
| 149. |
Express (-3)-1× (1/3)-1 as a rational number. |
|
Answer» (-3)-1× (1/3)-1 We know that, = (-3)-1= (-1/3)1 … [∵ (a/b)-n = (b/a) n] = (1/3)-1 = (3/1)1 … [∵ (a/b)-n = (b/a) n] = (-1/3) × (3/1) = (-1×3)/ (3×1) = (-3/3) = -1 |
|
| 150. |
Express (–2/3)-1 as a rational number. |
|
Answer» (–2/3)-1 We have: (-2/3)-1 = (-2/3)-1 = (3/-2)1 … [∵ (a/b)-n = (b/a) n] = (-3/2) |
|