Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

\(\frac{1}{(216)^{\frac{-2}{3}}}+\frac{1}{(256)^\frac{-3}{4}}+\frac{1}{(243)^{\frac{-1}{5}}}\) is equal to(a) 103 (b) 105 (c) 107 (d) 101

Answer»

(a) 103

Given exp. = \(\frac{1}{{(6^3)}^{-\frac{2}{3}}}+\frac{1}{(4^4)^{-\frac{3}{4}}}+\frac{1}{(3^5)^{-\frac{1}{5}}}\)

\(\frac{1}{6^{-2}}+\frac{1}{4^{-3}}+\frac{1}{3^{-1}}\)

= 62 + 43 + 3 = 36 + 64 + 3 = 103

2.

(-1)106 = A) 1 B) – 1 C) 106 D) 0

Answer»

Correct option is A) 1

(-1)106 = 1

(\(\because\) (-1)even = 1 & 106 is an even number)

3.

(3/5)0 = ?A. 5/3B. 3/5C. 1D. 0

Answer»

By the law of exponents \((\frac{a}{b})^0=1\)

We will get,

\((\frac{3}{5})^0=1\)

ans: option C

any number raised to 0 is 1
4.

(4° – 3°) × 2° = …………… A) 2 B) 1 C) 0 D) -1

Answer»

Correct option is C) 0

(4) (4° - 3°) x 2° = (1 - 1) x 1 = 0 x 1 = 0

5.

Which of the following is correct? A) 39 × 37 = 32 B) a1/2 × a3/2  = a3 C) p-2 × p2 = p4 D) y3 × y5 = y8

Answer»

Correct option is D) y3 × y5 = y8

y3 x y5 = y3 + 5 = y8

6.

If (5/12)-4 x (5/12)3x = (5/12)5, then x = ?A. -1 B. 1 C. 2 D. 3

Answer»

\((\frac{5}{12})^{-4}\times(\frac{5}{12})^{3x}=(\frac{5}{12})^5\)

\(\Rightarrow (\frac{5}{12})^{-4+3x}=(\frac{5}{12})^5\)

\(\Rightarrow\) 3x = 5 + 4 = 9

\(\Rightarrow x=\frac{9}{3}=3\)

7.

7x+5 = 1 ⇒ x = …………. A) 5 B) 0 C) -5D) 1

Answer»

Correct option is C) -5

7x+5 = 1 = 70

⇒ x + 5 = 0

⇒ x = -5

8.

Express (-27/64) in power notation.

Answer»

(-27/64)

We have,

-27 = -3 × -3 × -3 = (-3)3

64 = 4 × 4 × 4 = (4)3

Then,

= (-33/43)

∴ (-3/4)3

9.

(3-6 ÷ 34) = ?A. 3-2 B. 32 C. 3-10 D. 310

Answer»

\(3^{-6}\div3^4=(\frac{1}{3^6}\div3^4)\)

\(=\frac{1}{3^6}\times\frac{1}{3^4}=\frac{1}{3(6+4)}\)

\(=\frac{1}{3^{10}}=3^{-10}\)

10.

The value of (3/4)-3 isA. -27/64B. 64/27C. -9/4D. 27/64

Answer»

\((\frac{3}{4})^{-3}=(\frac{4}{33})^3=\frac{4^3}{3^3}=\frac{64}{27}\)

11.

Write the following numbers in the usual form:(i) 4.83 × 107(ii) 3.21 × 105(iii) 3.5 × 103

Answer»

(i) Given 4.83 × 107 

4.83 × 107 = 483 × 107-2 [since the decimal point is moved two places to the right]

= 483 × 105 

= 4, 83, 00,000

(ii) Given 3.21 × 10

3.21 × 10= 321 x 105-2 [since the decimal point is moved two places to the right]
= 321 x 103 

= 3, 21,000

(iii) Given 3.5 × 103 

3.5 × 103 = 35 x 103-1 [since the decimal point is moved one place to the right]

= 35 x 102 

= 3,500

12.

Simplify the following. i) 37 × 33ii) 4 × 4 × 4 × 4 × 4iii) 34 × 43

Answer»

(i) 37 × 33 = 37 + 33 = 310       [∵ am × an = am+n]

(ii) 4 × 4 × 4 × 4 × 4 = 45      [∵ a × a × a × ……. m times = am]

(iii) 34 × 43 = 34+3 = 37      [∵ am × an = am+n]

13.

(-1/5)3 = ?A. -1/9B. 1/9C. -1/27D. 1/27

Answer»

\((\frac{-1}{3})^3=\frac{-1^3}{3^3}=\frac{-1}{27}\)

14.

The value of m for which \([\{(\frac{1}{{7}^2})^{-2}\}^{-\frac{1}{3}}]^{\frac{1}{4}}\) = 7m, isA. \(-\frac{1}{3}\)B. \(\frac{1}4\)C. -3D. 2

Answer»

[{74} -1/3]1/4

= (1/74)1/3 × 1/4

= (1/7)1/3 = 7m

= 7-1/3 = 7m

= m = -1/3

15.

If a, m, n are positive integers, then \(\{m\sqrt{n\sqrt{a}}\}^{mn}\) is equal toA. amnB. aC. am/nD. 1

Answer»

\(\{m\sqrt{n\sqrt{a}}\}^{mn}\)

We know for any non-zero number a,

am × an = am+n

\(\{(a^{\frac{1}{n}})^{\frac{1}{m}}\}^{mn}\)

Again using (am)n = amn we get, = \(\{a^{\frac{1}{mn}}\}^{mn}\) = a

16.

If x = 2 and y = 4, then \((\frac{x}{y})^{x-y}+(\frac{y}{x})^{y-x}\) =A. 4B. 8C. 12D. 2

Answer»

(2/4)2 – 4 + (4 / 2)4 – 2

= (1/2)-2 + 22

= 22 + 22

= 8

17.

Assuming that x, y, z are positive real numbers, simplify each of the following:(i) \((\sqrt{x}^{-3})^5\)(ii) \(\sqrt{x^3y^{-2}}\)(iii) \((x^{-2/3}y^{-1/2})^2\)(iii) \((\sqrt{x})^{\frac{-2}{3}}\sqrt{y}^4+\sqrt{x}{y}\frac{-1}{2}\)(v) \(\sqrt[5]{243}x^{10}y^{5}z^{10}\)(vi) \((\frac{{x}^{-4}}{{y}^{-10}})^{\frac{5}{4}}\)

Answer»

(i) \((\frac{\sqrt1}{\sqrt3})^5\) = (1 / x3/2) 5

= (1 / x 3/2 × 5) = (1 / x 15/2)

(ii) \((\sqrt3^3/\sqrt{y}^2)\) = (x3 / y2) 1/2

= x3 × 1/2 / y2 × 1/2 

= x3/2 / y

(iii) 1 / (x2/3 y1/2)

= 1 / (x2/3 × 2 y1/2 × 2

= 1 / x4/3 y

(iv) (x1/2) -2/3 (y)2 / (xy-1/2) 1/2

= x-1/3y 2 / (x1/2y -1/2×1/2)

= (x-5/6) (y9/4

= (y9/4) / (x5/6)

(v) (243x10 y5 z10) 1/5 

= (35) 1/5 x2yz

= 3x2yz2 

(vi) (y10 / x4) 5/4 

= y 10 × 5/4 / x4 × 5/4 

= y25/2 / x5

18.

If 27x \(=\frac{9}{{3}^x}\),find x.

Answer»

We have, 

(27)x = 9 / 3x 

(33) x = 32 / 3x 

3 3x = 3 2 – x 

3x = 2 – x {On equating exponents} 

3x + x = 2 

4x = 2 

x = \(\frac{2}{4}\) \(=\frac{1}{2}\)

Hence, the value of x is \(\frac{1}{2}\)

19.

Prove that:(i) \({\sqrt\frac{1}{4}}=(0.01)^{-\frac{1}{2}}-(27)^{\frac{2}{3}}\) \(=\frac{3}{2}\)(ii) \(\frac{2^n+2^{n-1}}{2^{n+1}-2^n}\) \(=\frac{3}2\)(iii) \((\frac{64}{125})^{-\frac{2}{3}}\)\(+\frac{1}{(\frac{256}{625})^\frac{1}{4}}\)\(+(\frac{\sqrt{25}}{\sqrt[3]{64}})\) \(=\frac{65}{16}\)(iv)  \(\frac{3^{-3}\times6^2\times\sqrt{98}}{5^2\times\sqrt[3]\frac{1}{25}\times(15){-\frac{4}{3}}\times3^{\frac{1}{3}}}\)(v) \(\frac{(0.6)^0-(0.1)^{-1}}{(\frac{3}{8})^{-1}(\frac{3}{2})^3+(-\frac{1}{3})^{-1}}\) \(=-\frac{3}{2}\)

Answer»

(i) 1/2 + 1/(0.01) 1/2 -3

=1/2 + 10 – 9 

=1/2 + 1 

=3/2 

(ii) (2 n + 2n-1)/ ) (2n+1 - 2n

=2 n(1 + 2-1 ) / 2n (2-1) 

= [1 + (1/2)]/1 

=1 + 1/2 

=3/2 

(iii) (125/64) 2/3 + (625/256)1/4 + ( 5/4) 

=(5/4) 2 + 5/4 + 5/4 

=25/16 + 5/4 + 5/4 

=65/16 

(iv) (3 -3.62.7(2)1/2)/ (54/3.(15)-4/3‑.31/3

=28(2)1/2 (3 -3.36.7(2)1/2)/ (54/3-4/3.(3)-1

(3 -2.36.7(2)1/2)/ (50

1/9.36.7(2) 1/2 

28\(\sqrt2\)

(v) {1- 1/0.1}/ { (3/8) -1(3/2)3 + (-1/3)-1 

=1-10/{ (8/3)(3/2) 3 + (-3) 

=-9/(3 2-3) 

= -3/2

20.

If a, b, c are positive real numbers, then \(\sqrt[5]{3125a^{10}b^5c^{10}}\) is equal toA. 5a2bc2B. 25ab2cC. 5a3bc3D. 125a2bc2

Answer»

(3125a10b5c10) 1/5

= 5a2bc2

21.

If x is a positive real number and x2 = 2, then x3 =A. \(\sqrt2\)B. \(2\sqrt{2}\)C. \(3\sqrt{2}\)D. 4

Answer»

x 2 = 2

x = \(\sqrt2\)

x 3 = (2)1/2 × 3

= 2\(\sqrt2\)

22.

For any positive real number x, write the value of \(\{(x^a)^b\}^\frac{1}{ab}\{(x^b)^c\}^\frac{1}{bc}\{(x^c)^a\}^\frac{1}{ca}\)

Answer»

(x)ab × 1/ab . (x)bc . 1/bc . xca . 1/ca 

= x . x . x 

= x3

23.

\(\frac{{5}^{n+2}-{6} \times {5}^{n+1}}{{13 \times{5}^n-2 \times{5}^{n+1}}}\)is equal toA. \(\frac{5}3\)B. \(-\frac{5}3\)C. \(\frac{3}5\)D. \(-\frac{3}5\)

Answer»

5n (25 – 30) / 5n (13 – 10)

= -5 / 3

24.

If \(\frac{{3}^{2x-8}}{225}\) = \(\frac{5^3}{5^x}\), then x =A. 2B. 3C. 5D. 4

Answer»

\(\frac{{3}^{2x-8}}{225}\)\(\frac{5^3}{5^x}\)

= 5x × 32x – 8 = 55 × 33 Comparing the coefficient of x we get,

= x = 5

25.

Prove that:(i) \(\sqrt{3\times5^{-3}}\div \sqrt[3]{{3}^{-1}}\sqrt5\) x \(\sqrt[6]{{3}\times5^6}=\frac{3}{5}\)(ii) \({9}^{\frac{3}{2}}-3\times5^0-(\frac{1}{81})^{-\frac{1}{2}}\) = 15(iii) \((\frac{1}{4})^{-2}-3\times8^{\frac{2}{3}}\times4^0+(\frac{9}{15})^{-\frac{1}{2}}\) =  \(\frac{16}{3}\)(iv) \(\frac{2^{\frac{1}{2}}\times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{{10^{-\frac{1}{5}}}{}\times{5{\frac{3}{5}}}}\)\(\frac{3^{\frac{4}{3}\times {5}^{-\frac{7}{5}}}}{4^{\frac{3}{5}\times6}}\)

Answer»

(i) (31/2+1/6.5-3/2 +1) / (3-1/3.51/2

=(3 2/3.5-1/2) / (3-1/3.51/2

=(3 2/3 + 1/3) / (51/2 +1/2

=3/5 

(ii) (3 2 )3/2 -3.1 – (1/92) -1/2 

= 3 3 -3 -9 

=27 -3 -9 

=27-12 

=15 

(iii) 2 (-2)(-2) -3.82/3 +(3/4)-1 

=2 4 -3.22 + 4/3 =16 -12 + 4/3 

=16/3 

(iv) [(2.3 1/3)/(2-1/5 52/5)] × (2-1/5.3)/ (34/3.57/5

= 2.3 1/3 +1 -4/3 / 52/5-7/5 

= 2.5 

=10

26.

If a, b, c are positive real numbers, then \(\sqrt{a^{-1}{b}}\times\)\(\sqrt{b^{-1}{c}}\times\)\(\sqrt{c^{-1}{a}}\) is equal toA. 1 B. abc C. \(\sqrt{abc}\)D.\(\frac{1}{abc}\)

Answer»

(b/a)1/2 × (c/b)1/2 × (a/c)1/2

= (b/a × c/b × a/c)1/2

= 1

27.

The exponential form of 1296 is A) 24 × 35 B) 24 × 34 C) 25 × 34 D) 23 × 33

Answer»

Correct option is B) 24 × 34

28.

Simplify and write each of the following in exponential form:(i) (25)3 ÷ 53(ii) (81)5 ÷ (32)5(iii) 98 × (x2)5/ (27)4 × (x3)2(iv) 32 × 78 × 136/ 212 × 913

Answer»

(i) Given (25)3 ÷ 53

= (52)3 ÷ 53[According to the law of exponents we have (am)n = amn]

= 5÷ 53 [According to the law of exponents we have a÷ a= am-n        

= 56 – 3

= 53

(ii) Given (81)5 ÷ (32)5[According to the law of exponents we have (am)n = amn]

= (81)5 ÷ 310[81 = 34]

= (34)5 ÷ 310 [According to the law of exponents we have (am)n = amn]

= 320 ÷ 310

= 320-10 [According to the law of exponents we have a÷ a= am-n]         

= 310

(iii) Given 98 × (x2)5/ (27)4 × (x3)2

= (32)8 × (x2)5/ (33)4× (x3)2[According to the law of exponents we have (am)n = amn]

= 316 × x10/312 × x6

= 316-12 × x10-6[According to the law of exponents we have a÷ a= am-n]         

= 34 × x4

= (3x)4

(iv) Given (32 × 78 × 136)/ (212 × 913)

= (32 × 727× 136)/(212× 13× 73)[According to the law of exponents we have (am)n = amn]

= (212 × 72 × 136)/(212× 13× 73)

= (7× 136)/(13× 73)

= 916/913[According to the law of exponents we have a÷ a= am-n

= 916-3

= 913

29.

Identify the grater number, wherever possible, in each of the following ?(i) 43 or 34(ii) 53 or 35(iii) 28 or 82(iv) 1002 or 2100(v) 210 or 102

Answer»

(i) 43 or 34

43 = 4 × 4 × 4 = 64

34 = 3 × 3 × 3 × 3 = 81

∴ 34 > 43

(ii) 53 or 35

53 = 5 × 5 × 5 = 125

35 = 3 × 3 × 3 × 3 × 3 = 243

∴ 35 >53

(iii) 28 or 82

28 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 256

82 = 8 × 8 = 64

∴ 28 > 82

(iv) 1002 or 2100

1002 = 100 × 100= 10,000

28 = (210)10 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
× 2 × 2

= (1024)10 = [(1024)2]5 = [10,48,576]

= (10,48,476)5 > 10,000

= 2100 > 1002

(v) 210 or 102

210 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1024

102 = 10 × 10 = 100

∴ 210 > 102

30.

Can it happen that for some integer m ≠ 0 (\(\frac{4}{25}\))m = \((\frac{2}{5})^{m^2}\) ?

Answer»

(4/25)m = (2/5)m^2

(22/52)m = (2/5)m^2

(2/5)2m = (2/5)m^2

∴ m2 = 2m 

m.m = 2m 

m = 2 

It can happen if m = 2

31.

Suppose ‘m’ and ‘n’ are distinct integers \(\frac{3^m \times2^n}{2^m\times3^n}\) can be an integer? Give reasons.

Answer»

\(\frac{3^m \times2^n}{2^m\times3^n}\) = \(\frac{3^{m - n}}{2^{m - n}}\)

If ‘m’ and ‘n’ are two distinct integers. 

Then 3(m-n) is always on odd number and 2(m-n) is always an even number. If odd number is divided, by an even number the quotient is not an integer. 

Therefore it is’not an integer.

32.

Find the values of 24, 23 and 27 and verify whether 24 × 23 = 27.

Answer»

24 = 2 × 2 × 2 ×2 = 16;

23 = 2 × 2 x 2 = 8

27 = 2 × 2 × 2 × 2 × 2 × 2  × 2 = 128

24 × 23 = 16 × 8 = 128 = 27

24 × 23 = 27

33.

Using laws of exponents, simplify and write the answer in exponential form :(i) 32 × 34 × 38(ii) 615 ÷ 610(iii) a3 × a2(iv) 7x × 72(v) (52)3 ÷ 53(vi) 25 × 55(vii) a4 × b4(viii) (34)3(ix) (220 ÷ 215)(x) 8t ÷ 82

Answer»

(i) 32 × 34 × 38
= 32 + 4 + 8 = 314 [∵ am × an = am + n]

(ii) 615 ÷ 610

= 615 – 10 = 65 [∵ am ÷ an = am – n]

(iii) a3 × a2

= a3 + 2 = a5 [∵ am × an = am + n]

(iv) 7x × 72

= 7x + 2 [∵ am × an = am + n]

(v) (52)3 ÷ 53

= 52 × 3 ÷ 53 = 56 – 3 [(am)n = amn

∵ am ÷ an = am – n]

(vi) 25 × 55

= (2 × 5)5 = 105 [∵ am × bm = (ab)m]

(vii) a4 × b4

= a4 × b4 = (ab)4 [∵ am × bm = (ab)m]

(viii) (34)3

= 34 × 3 = 312 [(am)n = amn]

(ix) (220 ÷ 215)

(220 ÷ 215) × 23 = 220 – 15 × 23 [am ÷ an = am – n]

= 25 × 23

= 25 + 3 = 28 [am × an = am + n]

(x) 8t ÷ 82

= 8t – 2 [∵ am ÷ an = am – n]

34.

Say true or false and justify your answer:(i) 10 × 1011 = 10011(ii) 23 > 52(iii) 23 × 32 = 65(iv) 30 = (1000)0

Answer»

(i) 10 × 1011 = 10011

L.H.S = 10 × 1011 = 101 + 11 = 1012 RHS

10011 = (10 × 10)11

= (102)11

= 102 × 11 = 1022

∴ 1012 ≠ 1022

So 10 × 1011 ≠ 10011 

∴ It is false.

(ii) 23 > 52

= 2 × 2 × 2 > 5 × 5

= 8 > 25

∴ 23 > 52 

∴ It is false.

(iii) 23 × 32 = 65

= 2 × 2 × 2 × 3 × 3

= 6 × 6 × 6 × 6 × 6

= 72 = 7776

∴ 23 × 32 ≠ 65 

∴ It is false.

(iv) 30 = (1000)0

1 = 1

∴ 30 = (1000)0

 ∴ It is true

35.

State the quotient law of exponents.

Answer»

The quotient law of exponent states that to divide two exponents with the same base, you keep the base and subtract the powers.

36.

Is 32 equal to 23 ? Justify.

Answer»

32 ≠ 23

Since 32 = 3 × 3 = 9 and 23 = 8

∴ 32 ≠ 23

37.

Write the following in exponential form, (values are rounded off)i) Total surface area of the Earth is 510,000,000 square kilometers.ii) Population of Rajasthan is approximately 7,00,00,000.iii) The approximate age of the Earth is 4550 million years.iv) 1000 km in meters.

Answer»

i) 51 × 107 = 3× 17 × 107

ii) 7 × 107

iii) 4550 millions = 4550 × 10,00,000 (v 1 million =10 lakhs)

= 455 × 107 = 91 × 5 × 107 = 5 × 7 × 13 × 107

iv) 1 km = 1000 m

∴ 1000 km = 1000 × 1000 m = 106

38.

Express (i) 48951 (ii) 89325 in expanded form using exponents.

Answer»

i) 48951 = (4 × 10000) + (8 × 1000) + (9 × 100) + (5 × 10) + (1 × 1)

= (4 × 104) + (8× 103) + (9 × 102) + (5 × 1.0) + (1 × 1)

ii) 89325 = (8 × 10000) + (9 × 1000) + (3 × 100) + (2 × 10) + (5 × 1)

= (8 × 104) + (9 × 103) + (3 × 102) + (2 × 10) + (5 × 1)

39.

Write the base and the exponent in each case. Also, write the term in the expanded form.(i) 34(ii) (7x)2(iii) (5ab)3(iv) (4y)5

Answer»
S NoTermsBaseExponentExpanded form
i34343 x 3 x 3 x 3
ii(7x)27x27\(x\) x 7\(x\)
iii(5ab)35ab35ab  x 5ab x 5ab
iv (4y)54y54y x 4y x4y x 4y x4y

40.

Express each of the following in standard form: (i) 345 (ii) 180000 (iii) 0.000003 (iv) 0.000027

Answer»

(i) 345 = 3.45 × 100 = 3.45 × 102

(ii) 180000 = 18 × 1000 = 18 × 104 = 1.8 × 10 × 104 =1.8 × 10(1+4) =1.8 × 105

(iii) 0.000003 = \(\frac{3}{1000000}\) = 3 × 10-6

(iv) 0.000027 = \(\frac{27}{1000000}=\frac{27}{10^6}=\frac{2.7\times10}{10^6}\) = 2.7 × 10(1-6) = 2.7 × 10-5

41.

Evaluate 20 + 30

Answer»

20 + 30 = 1 + 1 = 2 

[∵ a0 = 1]

42.

Express population of India in March 2001= 1027000000 in standard form.

Answer»

Population of India in March 2001= 1027000000

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

Population of India in March 2001= 1027000000

= (1.027 × 109) (in standard form)

43.

Express  Distance between Earth and Moon = 384000000 m in standard form.

Answer»

Distance between Earth and Moon = 384000000 m

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

Distance between Earth and Moon = 384000000 m

= (3.84 × 108) m (in standard form)

44.

If g = t 2/3 + 4t -1/2, what is the value of g when t = 64?A. \(\cfrac{31}{2}\)B. \(\cfrac{33}{2}\)C. 16D. \(\cfrac{257}{16}\)

Answer»

g = t 2/3 + 4t -1/2 

= (64)2/3 + 4 (64) -1/2

= [(64)1/3] 3 + 4 \((\cfrac{1}{64})^\cfrac{1}{2}\)

= 42 + 4 (\(\cfrac{1}8\) )

= 16 + \(\cfrac{1}2\) = \(\cfrac{33}2\)

45.

If x-2 = 64, then x 1/3 + x0 = A. 2 B. 3 C. 3/2 D. 2/3

Answer»

\((\cfrac{1}{8})^2\) = (8)2

\(\cfrac{1}{x}\) = 8

x = \(\cfrac{1}{8}\)

x1/3 + xo

\((\cfrac{1}{8})^{\cfrac{1}{3}}\) + \((\cfrac{1}{8})^0\)

\(\cfrac{1}{2} + 1\) = \(\cfrac{3}{2}\)

46.

If 2x = 4y = 8z and xyz = 288, then \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{8z}\) equals(a) \(\frac{11}{8}\) (b) \(\frac{11}{24}\)(c) \(\frac{11}{48}\)(d) \(\frac{11}{96}\)

Answer»

(d) \(\frac{11}{96}\)

2x = (22)y = (23)z ⇒ x = 2y = 3z

Given xyz = 288 ⇒ \(x\times\frac{x}{2}\times\frac{x}{3} = 288\)

⇒ x3 = 6 × 288 ⇒ x3 = 1728

⇒ x = \(\sqrt[3]{1728}=12\)

∴ y = \(\frac{12}{2}\) = 6 and  = \(\frac{12}{3}\) = 4

∴ \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{8z}\) = \(\frac{1}{24}+\frac{1}{24}+\frac{1}{32}\)

\(\frac{4+4+3}{96} = \frac{11}{96}.\)

47.

If (2.4)x = (0.24)y = 10z then show that \(\frac1x-\frac1z=\frac1y\)

Answer»

(2.4)x = 10z ⇒ 2.4 = \(10^{\frac{z}{x}}\) 

and (0.24)y = 10z ⇒ 0.24 = \(10^{\frac{z}{y}}\)

∴ \(\frac{2.4}{0.24}=\frac{10^{\frac{z}{x}}}{10^{\frac{z}{y}}} ⇒ 10 = 10^{\frac{z}{x}-\frac{z}{y}}\)

⇒ 1 = \(\frac{z}{x}-\frac{z}{y} = z\big(\frac{1}{x}-\frac{1}{y}\big).\)

⇒ \(\frac{1}{x}-\frac{1}{y}=\frac{1}{z} \,or\,\) \(\frac{1}{x}-\frac{1}{z}=\frac{1}{y}.\)

48.

Express 23000000 in standard form.

Answer»

23000000

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

23000000 = 2.3 × 107

49.

Express Diameter of Earth = 12756000 m in standard form.

Answer»

Diameter of Earth = 12756000 m

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

Diameter of Earth = 12756000 m

= (1.2156 × 107) m (in standard form)

50.

If \(x^{x\sqrt{x}} = (x\sqrt{x})^x. then\, x\,is\,equal\,to\)(a) \(\frac32\) (b) \(\frac29\) (c) \(\frac94\) (d) \(\frac49\)

Answer»

(c) \(\frac94\)
\(x^{x\sqrt{x}} = (x\sqrt{x})^x\)

⇒ \(x^{x\sqrt{x}} = (x^{\frac32})^x\) ⇒ \(x^{x\sqrt{x}} =x^{\frac{3}{2}x}\)

⇒ \(x\sqrt{x} = \frac32x ⇒\sqrt{x} =\frac32⇒x=\frac94.\)