Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If 64a = \(\frac{1}{256^b}\), then 3a+4b equals(a) 2 (b) 4 (c) 8 (d) 0

Answer»

(d) 0

 64a = \(\frac{1}{256^b}\) ⇒ (26)\(\frac{1}{(2^8)^b}\)

⇒ 26a × 28b = 1 ⇒ 26a + 8b = 20

⇒ 6a + 8b = 0 ⇒ 3a + 4b = 0

52.

(1/2)-2 + (1/3)-2 + (1/4)-2 = ?(a) (61/144) (b) 29 (c) (144/61) (d) none of these

Answer»

(b) 29

We know that,

= (1/2)-2= (2/1)[∵ (a/b)-n = (b/a) n]

= (1/3)-2 = (3/1)2 … [∵ (a/b)-n = (b/a) n]

= (1/4)-2 = (4/1)2 … [∵ (a/b)-n = (b/a) n]

Now add,

= (2)2+ (3)2+ (4)2

= 4 + 9 + 16

= 29

53.

43.5 : 25 is the same as(a) 4 : 1 (b) 2 : 1 (c) 7 : 5 (d) 7 : 10

Answer»

(a) 4 : 1

43.5 : 25 = (22)3.5 : 25 = 27 : 25 

= \(\frac{2^7}{2^5}\) : 1 = 27–5 : 1 = 22 : 1 = 4 : 1.

54.

{6-1+(3/2)-1}-1(a) (2/3) (b) (5/6) (c) (6/5) (d) None of these

Answer»

(c) (6/5)

We know that,

= (6)-1= (1/6) … [∵ (a/b)-n = (b/a) n]

= (3/2)-1 = (2/3) … [∵ (a/b)-n = (b/a) n]

Now add,

= {(1/6) + (2/3)}-1

= {(1+4)/ 6}-1 … [LCM of 6 and 3 is 6]

= {5/6}-1

= {6/5}

55.

{(3/4)-1 – (1/4)-1}-1 = ?(a) (3/8) (b) (-3/8) (c) (8/3) (d) (-8/3)

Answer»

(b) (-3/8)

We know that,

= (3/4)-1= (4/3)[∵ (a/b)-n = (b/a) n]

= (1/4)-1 = (4/1)1 … [∵ (a/b)-n = (b/a) n]

Now subtract,

= {(4/3) – (4/1)} -1

= {(4-12)/3}-1 … [LCM of 3 and 1 is 3]

= {-8/3}-1

= {-3/8}

56.

(-1/2)-6 = ?(a) -64 (b) 64 (c) (1/64) (d) (-1/64)

Answer»

(b) 64

We know that,

= (-1/2)-6= (-2/1)[∵ (a/b)-n = (b/a) n]

= (-2)6

= 64

57.

(2/3)0 = ?A. 3/2B. 2/3C. 1D. 0

Answer»

By using the law of exponents \((\frac{a}{b})^0=1\)

\(\therefore(\frac{2}{3})^0=1\)

58.

(-5/3)-1 = 1A. 5/3B. 3/5C. -3/5D. None of these

Answer»

\((\frac{-5}{3})^{-1}=\frac{1}{\frac{5}{3}}=-\frac{3}{5}\)

59.

(-1/2)3 = ?A. -1/6B. 1/6C. 1/8D. -1/8

Answer»

\((-\frac{1}{2})^3=-\frac{1}{2}\times-\frac{1}{2}=-\frac{1}{8}\)

60.

(-3/4)2 = ?A. -9/16B. 9/16C. 16/9D. -16/9

Answer»

\((-\frac{3}{4})^2=-\frac{3}{4}\times-\frac{3}{4}=\frac{9}{16}\)

61.

[{(-1/2)2}-2]-1=?(a) (1/16) (b) 16 (c) (-1/16) (d) -16

Answer»

(a) (1/16)

[{(-1/2)2}-2]-1= [{(-12/22)}-2]-1

= [{1/4}-2]-1

= [{4} 2]-1

= [16]-1

= [1/16]

62.

Find the reciprocal of (-5/6)11.

Answer»

(-5/6)11

We know that the reciprocal of (a/b) m is (b/a) m

Then,

Reciprocal of (-5/6)11 is (-6/5)11

63.

Express the following information in the standard form. (i) The size of red blood cells is 0.000007mm(ii) The speed of light is 300000000 m/sec(iii) The distance between the moon and the earth is 384467000 m(app)(iv) The charge of an electron is 0.0000000000000000016 coulombs(v) Thickness of a piece of paper is 0.0016 cm(vi) The diameter of a wire on a computer chip is 0.000005 cm

Answer»

(i) The size of red blood cells is 0.000007mm

= 7 / 1000000 = 7 × 10-6

(ii) The speed of light is 300000000 m/sec

= 3 × 10,00,00,000 = 3 × 108 m/sec

(iii) The distance between the moon and the earth is 384467000 m(app)

= 384467 × 1000 m

= 384467 × 103

(iv) The charge of an electron is 0.0000000000000000016 coulombs

= 0.0000000000000000016

= 16 / 10000000000000000000

= 16 / 1019

= 16 × 10-19 coulombs

(v) Thickness of a piece of paper is 0.0016 cm

= 0.0016 cm = 16 / 10000

= 16 / 104

= 16 × 10-4 cm

(vi) The diameter of a wire on a computer chip is 0.000005 cm

= 0.000005 cm = 5 / 1000000 cm

= 5 / 106 cm = 5 × 10-6 cm

64.

What is 10-10 equal to?

Answer»

10-10 = 1 / 1010      [∵ a-n = 1 / a]

65.

The stand form of the distance between the earth and the moon is aprox. 12,000,000,000 mts A) 12 × 1011 years B) 1.2 × 1010 years C) 0.12 × 109 years D) 120 × 1011 years

Answer»

Correct option is B) 1.2 × 1010 years

66.

Prime factorisation of 72 is ………….?A) 23 × 32B) 23 × 33C) 33 × 22 D) 2 × 32 × 7

Answer»

Correct option is A) 23 × 32

67.

(1/2)-2 + (1/3)-2 + (1/4)-2 = ?A. 61/144B. 144/61C. 29D. 1/29

Answer»

\((\frac{1}{2})^{-2}+(\frac{1}{3})^{-2}+(\frac{1}{4})^{-2}\) = \((\frac{2}{1})^2+(\frac{3}{1})^2+(\frac{4}{1})^2\)

= 22+32+42 

= 4+9+16 

= 29

68.

Express each of the following numbers as a product of powers of their prime factors:(i) 450(ii) 2800(iii) 24000

Answer»

(i) Given 450

Prime factorization of 450 = 2 x 3 x 3 x 5 x 5

= 2 x 32 x 52

(ii) Given 2800

Prime factorization of 2800 = 2 x 2 x 2 x 2 x 5 x 5 x 7

= 24 x 52 x 7

(iii) Given 24000

Prime factorization of 24000 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 5 x 5 x 5

= 26 x 3 x 53

69.

r × r × 7 times = ………………? A) 7rB) 7r C) r7D) None

Answer»

Correct option is C) r7

r x r x....x r (7 times) = r7

70.

Express (5/7)-1× (7/4)-1 as a rational number.

Answer»

(5/7)-1× (7/4)-1

We know that,

= (5/7)-1= (7/5)[∵ (a/b)-n = (b/a) n]

= (7/4)-1 = (4/7)1 … [∵ (a/b)-n = (b/a) n]

= (7/5) × (4/7)

= (7×4)/ (5×7)

On simplifying,

= (1×4)/ (5×1)

= 4/5

71.

Express (-6)-1 as a rational number.

Answer»

(-6)-1

We have:

(-6)-1 = (-6/1)-1

= (1/-6)1 … [∵ (a/b)-n = (b/a) n]

= (-1/6)

72.

If x = yz , y = zx and z = xy , then(a) \(\frac{xy}{z} = 1\)(b) xyz = 1 (c) x + y + z = 1 (d) xz = y

Answer»

(b) xyz = 1

z = xy = (yz)y              ( x = yz

= yzy = (zx)zy = zxyz   ( y = zx

∴ z1 = zxyz  ⇒  xyz = 1

73.

Find the value of x if \(\big[3^{2x-2}+10\big]\) ÷ 13 = 7.(a) 1 (b) 3 (c) 4 (d) 2

Answer»

(b) 3

  \(\big[3^{2x-2}+10\big]\) ÷ 13 = 7.

⇒ 32x – 2 + 10 = 7 × 13 = 91

⇒ 32x – 2 = 91 – 10 = 81 = 34

⇒ 2x –2 = 4 ⇒ 2x = 6 ⇒ x = 3.

74.

Express (-2)-5 as a rational number.

Answer»

(-2)-5

We know that,

= (-2)-5 = (-1/2)3 … [∵ (a/b)-n = (b/a) n]

= (-13/23)

= (-1/8)

75.

Express each of the following numbers as a product of powers of their prime factors:(i) 36(ii) 675(iii) 392

Answer»

(i) Given 36

Prime factorization of 36 = 2 x 2 x 3 x 3

= 22 x 32

(ii) Given 675

Prime factorization of 675 = 3 x 3 x 3 x 5 x 5

= 33 x 52

(iii) Given 392

Prime factorization of 392 = 2 x 2 x 2 x 7 x 7

= 23 x 72

76.

By what number should three be multiplied so that the product is 729’?

Answer»

Given number = 3-4

Given product = 729 [∵ 36 = 729]

Let the number to be multiplied be x then

⇒ (3-4) . (x) = 36 ⇒ x/34 =36

[∵ am × nn = am+n]

⇒ x = 36 × 34 = 310

77.

Express each of the following numbers in exponential form:(i) 512(ii) 625(iii) 729

Answer»

(i) Given 512

Prime factorization of 512 

= 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2

= 29

(ii) Given 625

Prime factorization of 625 

= 5 x 5 x 5 x 5

= 54

(iii) Given 729

Prime factorization of 729 

= 3 x 3 x 3 x 3 x 3 x 3

= 36

78.

If a = 3, b = 2 find the value of(i) ab + ba(ii) aa + bb(iii) (a + b)ab(iv)(a – b)a

Answer»

(i) ab + ba = 32 + 23 = 3 × 3 + 2 × 2 × 2 = 9 + 8 =17

(ii) aa + bb = 33 + 22 = 3 × 3 × 3 + 2 × 2 = 27 + 4 = 31

(iii) (a + b)b = (3 + 2)2 = 52 = 5 × 5 = 25

(iv)(a – b)a = (3 – 2)2= 12 = 1 × 1 = 1 .

79.

Express each of the following in exponential form:(i) x × x × x × x × a × a × b × b × b(ii) (-2) × (-2) × (-2) × (-2) × a × a × a(iii) (-2/3) × (-2/3) × x × x × x

Answer»

(i) Given x × x × x × x × a × a × b × b × b

Exponential form of x × x × x × x × a × a × b × b × b = x4a2b3

(ii) Given (-2) × (-2) × (-2) × (-2) × a × a × a

Exponential form of (-2) × (-2) × (-2) × (-2) × a × a × a = (-2)4a3

(iii) Given (-2/3) × (-2/3) × x × x × x

Exponential form of (-2/3) × (-2/3) × x × x × x = (-2/3)x3

80.

Identify the greater number in each of the following pairs.(i) 23 or 32(ii) 53 or 35(iii) 28 or 82

Answer»

(i) 23 or 32 = 23 = 2 × 2 × 2 

= 8 and 32 = 3 × 3 = 9

∴ 23 < 32 or 32 > 23

(ii) 53 or 35 = 53 = 5 × 5 × 5 = 125 and 35 

= 3 × 3 × 3 × 3 × 3 = 243

∴ 35 > 53

iii) 28 or 82 = 28 

= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 256

82 = 8 × 8 = 64

∴ 28 > 82

81.

Express each of the following in exponential form:(i) (-5) × (-5) × (-5)(ii) (-5/7) × (-5/7) × (-5/7) × (-5/7)(iii) (4/3) × (4/3) × (4/3) × (4/3) × (4/3)

Answer»

(i) Given (-5) × (-5) × (-5)

Exponential form of (-5) × (-5) × (-5) = (-5)3

(ii) Given (-5/7) × (-5/7) × (-5/7) × (-5/7)

Exponential form of (-5/7) × (-5/7) × (-5/7) × (-5/7) = (-5/7)4

(iii) Given (4/3) × (4/3) × (4/3) × (4/3) × (4/3)

Exponential form of (4/3) × (4/3) × (4/3) × (4/3) × (4/3) = (4/3)5

82.

Identify the greater number in each of the following:(i) 25 or 52(ii) 34 or 43(iii) 35 or 53

Answer»

(i) Given 25 or 52

25 = 2 × 2 × 2 × 2 × 2

= 32

52 = 5 × 5

= 25

Therefore, 25 > 52

(ii) Given 34 or 43

34 = 3 × 3 × 3 × 3

= 81

4= 4 × 4 × 4

= 64

Therefore, 34 > 43

(iii) Given 3or 53

35 = 3 × 3 × 3 × 3 × 3

= 243

53 = 5 × 5 × 5

= 125

Therefore, 35 > 53

83.

Express (4)-1 as a rational number.

Answer»

(4)-1

We have:

(4)-1 = (4/1)-1

= (1/4)[∵ (a/b)-n = (b/a) n]

= (1/4)

84.

Express (-1)9 a rational number.

Answer»

(-1)9

We have,

(-1)9 = (-19)

= (-1 × -1 × -1× -1 × -1 × -1 × -1× -1 × -1)

= (-1)

85.

Express (-1/2)5 a rational number.

Answer»

(-1/2)5

We have,

(-1/2)5 = (-15/25)

= (-1 × -1 × -1× -1 × -1) / (2 × 2 × 2 × 2 × 2)

= (-1/32)

86.

Express (2/3)5 a rational number.

Answer»

(2/3)5

We have,

(2/3)5 = (25/35)

= (2 × 2 × 2 × 2 × 2) / (3 × 3 × 3 × 3 × 3)

= (32/243)

87.

Express (-4/7)3 a rational number.

Answer»

(-4/7)3

We have,

(-4/7)3 = (-43/73)

= (-4 × -4 × -4) / (7 × 7 × 7)

= (-64/343)

88.

Express  (-8/5)3 a rational number.

Answer»

 (-8/5)3

We have,

(-8/5)3 = (-83/53)

= (-8 × -8 × -8) / (5 × 5 × 5)

= (-512/125)

89.

Express (1/6)3 a rational number.

Answer»

(1/6)3

We have,

(1/6)3 = (13/63)

= (1 × 1 × 1) / (6 × 6 × 6)

= (1/216)

90.

Express the following numbers in the exponential form.i. 1728 ii. \(\frac{1}{512}\)iii. 0.000169

Answer»

i. 1728= 12 x 12 x 12 

1728= 123 

ii. \(\frac{1}{512} = \frac{1}{2^9}\) = 2-9

iii. 0.000169 = (0.013)-2

91.

(22)3 = ………………A) 512 B) 64C) 223D) 256

Answer»

Correct option is B) 64

(22)3 = 22 x 3 = 26 = 64

92.

Which is larger (53 x 54 x 55 x 56) or (57 x 58)

Answer»

53 x 54 x 55 x 56 

= 53+4+5+6 

= 518 x 57 x 5

= 57+8 

= 58 

∴ 53 x 54 x 55 x 56 is larger than 57 x 58

93.

Which of the following is not true?A) x-7 = \(\frac{1}{x^7}\)B) x5 = \(\frac{1}{x^-5}\)C) x° = 1 D) \(\frac{1}{x^-5}\) = x1/5

Answer»

Correct option is D) \(\frac{1}{x^-5}\) = x1/5

\(\frac1{x^{-5}}=(x^{-5})^{-1}\) = x5 \(\neq\) x1/5

correct answer is D 
because 
1/x^-5= x^5
94.

Find the value of (-0.2)-4

Answer»

(-0.2)-4 = (-2/10)-4

= (-1/5)-4

= (-5)4

= -5 x -5 x - 5 x -5 

= 625

95.

How many zeros are there in 104 x 103 x 102 x 10?

Answer»

104 × 103 × 102 × 10 

= 104+3+2+1 

= 1010 

There are 10 zeros.

96.

Express 5-3 as a rational number.

Answer»

5-3

We know that,

= (5)-3 = (1/5)3 … [∵ (a/b)-n = (b/a) n]

= (13/53)

= (1/125)

97.

Which of the following is true? A) 138/135 = 1313B) (2 × 3)4 = 34/24 C) (32)3 = 36 D) ( 3/4)5 = 35 × 34

Answer»

Correct option is C) (32)3 = 36 

(A) \(\frac{13^8}{13^5}=13^{8-5}=13^3\neq13^{13}\) 

(B) (2 x 3)4 = 24 x 34 \(\neq\) \(\frac{3^4}{2^4}\) 

(C) (32)3 = 32 x 3 = 36

(D) (3/4)5 = \(\frac{3^5}{4^5}\neq3^5\times3^4\)

98.

Express (-13/11)2 a rational number.

Answer»

(-13/11)2

We have,

(-13/11)2 = (-132/112)

= (-13 × -13) / (11 × 11)

= (169/121)

99.

Simplify:(i) (3/4)2(ii) (-2/3)4(iii) (-4/5)5

Answer»

(i) Given (3/4)2

(3/4)2 

= (3/4) × (3/4)

= (9/16)

(ii) Given (-2/3)4

(-2/3)4 

= (-2/3) × (-2/3) × (-2/3) × (-2/3)

= (16/81)

(iii) Given (-4/5)5

(-4/5)5 

= (-4/5) × (-4/5) × (-4/5) × (-4/5) × (-4/5)

= (-1024/3125)

100.

Simplify:(i) (-2) × (-3)3(ii) (-3)2 × (-5)3(iii) (-2)5 × (-10)2

Answer»

(i) Given (-2) × (-3)3 

(-2) × (-3)3 

= (-2) × (-3) × (-3) × (-3)

= (-2) × (-27)

= 54

(ii) Given (-3)2 × (-5)3 

(-3)2 × (-5)3 

= (-3) × (-3) × (-5) × (-5) × (-5)

= 9 × (-125)

= -1125

(iii) Given (-2)5 × (-10)

(-2)5 × (-10)

= (-2) × (-2) × (-2) × (-2) × (-2) × (-10) × (-10)

= (-32) × 100

= -3200