InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
Express (1/3)-1 as a rational number. |
|
Answer» (1/3)-1 We have: (1/3)-1 = (-6/1)-1 = (3/1)1 … [∵ (a/b)-n = (b/a) n] = 3 |
|
| 152. |
Express 538 in standard form. |
|
Answer» 538 A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer. Then, 538 = 5.38 × 102 |
|
| 153. |
If 102y = 25, then 10-y equalsA, \(-\frac{1}5\)B.\(\frac{1}{50}\)C.\(\frac{1}{625}\)D.\(\frac{1}5\) |
|
Answer» 102y = 25 = 10y = x = x2 = 52 = x = 5 = 1/x = 10-y = 1/5 |
|
| 154. |
Express (23/25)° as a rational number. |
|
Answer» (23/25)° = (23/25)° = 1 Because, by definition, we have a° = 1 for every integer. |
|
| 155. |
Express {(3/2)-1 ÷ (-2/5)-1} as a rational number. |
|
Answer» {(3/2)-1 ÷ (-2/5)-1} We know that, = (3/2)-1= (2/3)1 … [∵ (a/b)-n = (b/a) n] = (-2/5)-1 = (-5/2)1 … [∵ (a/b)-n = (b/a) n] Now divide, = {(2/3) ÷ (-5/2)} = {(2/3) × (-2/5} = {(2×-2) / (3×5) = {-4/15} |
|
| 156. |
Express {(4/3)-1 – (1/4)-1}-1 as a rational number. |
|
Answer» {(4/3)-1 – (1/4)-1}-1 We know that, = (4/3)-1= (3/4)1 … [∵ (a/b)-n = (b/a) n] = (1/4)-1 = (4/1)1 … [∵ (a/b)-n = (b/a) n] Now subtract, = {(3/4) – (4/1)}-1 = {(3-16)/4}-1 … [LCM of 4 and 1 is 4] = {-13/4}-1 = {-4/13} |
|
| 157. |
Express (5-1– 7-1)-1 as a rational number. |
|
Answer» (5-1– 7-1)-1 We know that, = (5)-1= (1/5)1 … [∵ (a/b)-n = (b/a) n] = (7)-1 = (1/7)1 … [∵ (a/b)-n = (b/a) n] Now subtract, = {(1/5) – (1/7)}-1 = {(7-5)/35}-1 … [LCM of 5 and 7 is 35] = {2/35}-1 = {35/2} |
|
| 158. |
(- 5) × (- 5) × (- 5) × ………………. × (- 5) (16 times) = A) (- 5)16 B) 16-5C) 16 – 5 D)16 × (- 5) |
|
Answer» Correct option is A) (- 5)16 (-5) x (-5) x (-5) x.... x(-5) (16 times) = (-5)16 |
|
| 159. |
Write the value of \(\sqrt[3]{125\times27}\). |
|
Answer» \(\sqrt[3]{125\times27}\) = (53 × 33) 1/3 = 5 × 3 = 15 |
|
| 160. |
(256)0.16 × (256)0.09 A. 4 B. 16 C. 64 D. 256.25 |
|
Answer» (256)0.16 × (256)0.09 = (256) 0.16 + 0.09 = (256) 0.25 = \(4^4\times\frac{1}{4}\) = 4 |
|
| 161. |
Express each of the following as a rational number of the form (p/q):(i) (3/7)2(ii) (7/9)3(iii) (-2/3)4 |
|
Answer» (i) Given (3/7)2 (3/7)2 = (3/7) x (3/7) = (9/49) (ii) Given (7/9)3 (7/9)3 = (7/9) x (7/9) x (7/9) = (343/729) (iii) Given (-2/3)4 (-2/3)4 = (-2/3) x (-2/3) x (-2/3) x (-2/3) = ((16/81) |
|
| 162. |
1216 × 12-4 = A) 1212B) 1220C) 2412D) 1264 |
|
Answer» Correct option is A) 1212 1216 x 12-4 = 1216-4 = 1212 |
|
| 163. |
\((\frac{1}{64})^0 + (64)^{\frac{-1}{2}}+(32)^{\frac{4}{5}}-(32)^{\frac{-4}{5}}\) is equal to (a) \(16\frac18\)(b) \(17\frac18\)(c) \(17\frac1{16}\)(d) \(-17\frac1{16}\) |
|
Answer» (c) \(17\frac1{16}\) Given exp. = 1 + \((8^2)^{-\frac12}+(2^5)^{\frac45}-(2^5)^{-\frac45}\) = 1 + 8–1 + 24 – 2–4 = \(1+ \frac18+16-\frac1{16}=\frac{16+2+256-1}{16}\) = \(\frac{273}{16} = 17\frac1{16}\) |
|
| 164. |
The value of {2-3(2-3)3} 3 isA. 5 B. 125 C. 1/5 D. -125 |
|
Answer» {2-3(2-3)3} 3 = {2 – 3 (-1)3} 3 = {2 + 3}3 = 53 = 125 |
|
| 165. |
x17 / x15 = A) x32 B) x-2C) x2 D) x1/2 |
|
Answer» Correct option is C) x2 \(\frac{x^{17}}{x^{15}}=\frac{x^{15}\times x^2}{x^{15}}\) = x2 |
|
| 166. |
125 when expressed In exponential form A) 52B) 53 C) 54D) 5-3 |
|
Answer» Correct option is B) 53 125 = 5 x 5 x 5 = 53 |
|
| 167. |
The value of (2/5)-3 isA. -8/125B. 25/4C. 125/8D. -2/5 |
|
Answer» \((\frac{2}{5})^{-3}=(\frac{5}{2})^3=\frac{5^3}{2^3}=\frac{125}{8}\) |
|
| 168. |
The value of \((-2)^{-5}\) isA. -32B. -1/32C. 32D. 1/32 |
|
Answer» (-2)-5 = \(\frac{1}{(-2)^5}=\frac{1}{-32}=\frac{1\times(-1)}{-32\times(-1)}=\frac{-1}{32}\) |
|
| 169. |
The value of \((-3)^{-4}\) isA. 12 B. 81C. -1/10D. 1/81 |
|
Answer» (-3)-4 = \(\frac{1}{(-3)^4}=\frac{1}{(-1)^4\times(3)^4}=\frac{1}{(3)^4}=\frac{1}{81}\) |
|
| 170. |
Simplify :\(\frac{(6.25)^{\frac12}\times(0.0144)^{\frac12}+1}{(0.027)^{\frac13}\times(81)^{\frac14}}\)(a) 0.14 (b) 1.4 (c) 1 (d) \(1.\overline4\) |
|
Answer» (d) \(1.\overline4\) Given exp. = \(\frac{\big((2.5)^2\big)^{\frac12}\times\big((0.12)^2\big)^{\frac12}+1}{\big((0.3)^3\big)^{\frac13}\times\big((3^4)\big)^{\frac14}}\) = \(\frac{2.5\times0.12+1}{0.3\times3}\) = \(\frac{0.3+1}{0.9} = \frac{1.3}{0.9}=\frac{13}{9}\) = \(1.\overline4\) |
|
| 171. |
x + x + x + ……. + x(m times)= A) xm B) mx C) m + x D) mx |
|
Answer» Correct option is D) mx x + x + x +..... + x (m times) = x(1 + 1 + 1 + ....+ 1)(m times) = x.m = mx |
|
| 172. |
Find the values of n in each of the following:(i) 52n × 53 = 511(ii) 9 x 3n = 37(iii) 8 x 2n+2 = 32 |
|
Answer» (i) Given 52n x 53 = 511 ⇒ n = (8/2) ⇒ n = 4 (ii) Given 9 x 3n = 37 n = 5 (iii) Given 8 x 2n+2 = 32 |
|
| 173. |
(2-1 – 4-1)2(a) 4 (b) -4 (c) (1/16) (d) (-1/16) |
|
Answer» (c) (1/16) We know that, = (2)-1= (1/2)1 … [∵ (a/b)-n = (b/a) n] = (4)-1 = (1/4)1 … [∵ (a/b)-n = (b/a) n] Now subtract, = {(1/2) – (1/4)} 2 = {(2-1)/4}2 … [LCM of 2 and 4 is 4] = {1/4}2 = {12/42} = {1/16} |
|
| 174. |
(5-1 × 3 -1)-1(a) (1/15) (b) (-1/15) (c) 15 (d) -15 |
|
Answer» (c) 15 We know that, = (5)-1= (1 /5)1 … [∵ (a/b)-n = (b/a) n] = (3)-1 = (1/3)1 … [∵ (a/b)-n = (b/a) n] Now multiply, = {(1/5) × (1/3)}-1 = {(1×1)/ (5×3)}-1 = {1/15}-1 = {15/1} = 15 |
|
| 175. |
(6-1– 8-1)-1 = ?(a) (-1/2) (b) -2 (c) (1/24) (d) 24 |
|
Answer» (D) 24 We know that, = (6)-1= (1/6)1 … [∵ (a/b)-n = (b/a) n] = (8)-1 = (1/8)1 … [∵ (a/b)-n = (b/a) n]
= {(4-3)/24}-1 … [LCM of 6 and 8 is 24] = {1/24}-1 = {24/1} = 24 |
|
| 176. |
If 4x – 4x-1 = 24, then (2x)x equals A. \(5\sqrt5\)B. \(\sqrt5\)C. \(25\sqrt5\)D. 125 |
|
Answer» 4x – 4x – 1 = 24 Let 4x = y y - \(\frac{y}4\)= 24 4y – y = 96 y = 32 4x = 32 22x = 25 (2x)x = \((2\times\frac{5}{2})^{\frac{5}{2}}\) (5)5/2 = \(25\sqrt5\) |
|
| 177. |
The distance from the earth to the sun is 149600000000 m. Write it in standard form. |
|
Answer» Distance from earth to sun = 149600000000 m In standard form we have, 149600000000 = 1496 × 100000000 = 1.496 × 1000 × 100000000 = 1.496 × 103 × 108 = 1.496 × 1011 m. |
|
| 178. |
Mass of earth is (5.97 x 1024) kg and mass of moon is (7.35 x 1022) kg. What is the total mass of the two? |
|
Answer» Given, Mass of the earth = 5.97 × 1024 kg Mass of the moon = 7.35 × 1022 kg Now, Mass of the earth = 5.97 × 1024 = 5.97 × 10(2+22) = 5.97 × 102 × 1022 = 597 × 1022 So, We can also Wright the mass of the earth as 597 × 1022 kg Sum of the masses of the earth and the moon; = (597 × 1022) + (7.35 × 1022) = (597+7.35) × 1022 = 604.35 × 1022 kg = 6.0435 × 100 × 1022 = 6.0435 × 102 × 1022 = 6.0435 × 10(2+22) = 6.0435 × 1024 kg |
|
| 179. |
Write each of the following numbers in standard form: (i) 0.0006 (ii) 0.00000083 (iii) 0.0000000534 (iv) 0.0027 (v) 0.00000165 (vi) 0.00000000689 |
|
Answer» (i) 0.0006 = \(\frac{6}{10^4}=6\,\times10^{-4}\) (ii) 0.00000083 = \(\frac{8^3}{10^3}\) = \(\frac{8.3\times10}{10^3}\) = 8.3 x 10(1-8) = 8.3 x 10-7 (iii) 0.0000000534 = \(\frac{534}{10^{10}}\) = \(\frac{5.34\times10^2}{10^{10}}\) = 5.34 x 10(2-10) = 5.34 x 10-8 (iv) 0.0027 = \(\frac{27}{10^4}\) = \(\frac{27\times10}{10^4}\) = 2.7 x 10(1-4) = 2.7 x 10-3 (v) 0.00000165 = \(\frac{165}{10^3}=\frac{1.65\times10^2}{10^3}\) = 1.65 x 10(2-8) = 1.65 x 10-6 (vi) 0.00000000689 = \(\frac{689}{10^{11}}=\frac{6.89\times10^2}{10^{11}}\) = 6.89 x 10(2-11) = 6.89 x 10-9 |
|
| 180. |
In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack? |
|
Answer» Thickness of one book = 20 mm Thickness of 5 books = 20 x 5 = 100 mm Thickness of one paper = 0.016 mm Thickness of 5 papers = 0.016 x 5 = 0.08 mm Total thickness of a stack = 100 + 0.08 = 100.08 mm = 100.08 x 102/102 = 1.0008 x 102 mm |
|
| 181. |
1 micron = 1/1000000m. Express it in standard form. |
|
Answer» 1 micron = \(\frac{1}{1000000}m=\) 1 × 10-6 m. |
|
| 182. |
Expand the following numbers using exponents.i) 543.67ii) 7054.243iii) 6540.305iv) 6523.450 |
|
Answer» i) 543.67 = (5 × 100) + (4 × 10) + (3 × 100) + (6 / 10) + (7 / 102) = (5 × 102) + (4 × 10) + (3 × 100) + (6 × 10-1) + (7 × 10-2) [∵ an = a-n] ii) 7054.243 = (7 × 1000) + (0 × 100) + (5 × 10) + (4 × 100) + (2 / 10) + (4 / 100) + (3 / 1000) = (7 × 103) + (0 × 102) + (5 × 101) + (4 × 100) + (2 × 10-1) + (4 × 10-2) + (3 × 10-3) iii) 6540.305 = (6 × 1000) + (5 × 100) + (4 × 10) + (0 × 100) + (3 / 10) + (0 / 100) + (5 / 1000) = (6 × 103) + (5 × 102) + (4 × 101) + (0 × 100) + (3 × 10-1) + (0 × 10-2) + (5 × 10-3) iv) 6523.450 = (6 × 1000) + (5 × 100) + (2 × 10) + (3 × 100) + (4 / 10) + (5 / 100) + (0 / 1000) = (6 × 103) + (5 × 102) + (2 × 101) + (3 × 100) + (4 × 10-1) + (5 × 10-2) + (0 × 10-3) |
|
| 183. |
Write the following numbers in the standard form. The standard form of the following numbers are(i) 0.0000456(ii) 0.000000529(iii) 0.0000000085(iv) 6020000000(v) 35400000000vi) 0.000437 × 104 |
|
Answer» (i) 0.0000456 = 456 / 10000000 = 456 × 10-7 (ii) 0.000000529 = 529 / 1000000000 = 529 × 109 (iii) 0.0000000085 = 85 / 10000000000 = 85 × 1010 (iv) 6020000000 = 602 × 10000000 = 602 × 107 (v) 35400000000 = 354 × 100000000 = 354 × 108 vi) 0.000437 × 104 = 437 / 1000000 × 104 = 437 × 10-6 × 104 = 437 × 10(-6)+4 = 437 × 10-2 |
|
| 184. |
Express the following numbers in the usual form.(i) 4.37 × 105(ii) 5.8 × 107(iii) 32.5 × 10-4(iv) 3.71529 × 107(v) 3789 × 10-5(vi) 24.36 × 10-3 |
|
Answer» (i) 4.37 × 105 = 4.37 × 100000 = 437000 (ii) 5.8 × 107 = 5.8 × 10000000 (iii) 32.5 × 10-4 = 32.5 / 104 = 32.5 / 10000 = 0.00325 (iv) 3.71529 × 107 = 3.71529 × 10000000 = 37152900 (v) 3789 × 10-5 = 3789 / 105 = 3789 / 100000 = 0.03789 (vi) 24.36 × 10-3 = 24.36 / 103 = 24.36 / 1000 = 0.02436 |
|
| 185. |
Express the following in exponential form :(i) 6 × 6 × 6 × 6(ii) t × t(iii) b × b × b × b(iv) 5 × 5 × 7 × 7 × 7(v) 2 × 2 × a × a(vi) a × a × a × c × c × c × c × d |
|
Answer» (i) 6 × 6 × 6 × 6 = 64 (ii) t × t = t2 (iii) b × b × b × b = b4 (iv) 5 × 5 × 7 × 7 × 7 = 52 × 73 (v) 2 × 2 × a × a = 22 × a2 (vi) a × a × a × c × c × c × c × d = a3 × c4 × d |
|
| 186. |
Find the value of :(i) 26(ii) 93(iii) 112(iv) 54 |
|
Answer» (i) 26 = 2 × 2 × 2 × 2 × 2 × 2 = 64 (ii) 93 = 9 × 9 × 9 = 729 (iii) 112 = 11 × 11 = 121 (iv) 54 = 5 × 5 × 5 × 5 = 625. |
|
| 187. |
Write (-8) ×(-8) × (-8) × (-8) × (-8) in power notation. |
|
Answer» (-8) ×(-8) × (-8) × (-8) × (-8) The product of rational number multiplied several times by itself can be expressed in the power notations as, (-8)5 |
|
| 188. |
Write (-1/6) ×(-1/6) × (-1/6) in power notation. |
|
Answer» (-1/6) ×(-1/6) × (-1/6) The product of rational number multiplied several times by itself can be expressed in the power notations as, (-1/6)3 |
|
| 189. |
Write (-4/3) ×(-4/3) × (-4/3) × (-4/3) × (-4/3) in power notation. |
|
Answer» (-4/3) ×(-4/3) × (-4/3) × (-4/3) × (-4/3) The product of rational number multiplied several times by itself can be expressed in the power notations as, (-4/3)5 |
|
| 190. |
Find the number from each of the following expanded forms:(i) 7 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100(ii) 5 × 105 + 4 × 104 + 2 × 103 + 3 × 100(iii) 9 × 105 + 5 × 102 + 3 × 101(iv) 3 × 104 + 4 × 102 + 5 × 100 |
|
Answer» (i) Given 7 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100 = 70000 + 6000 + 0 + 40 + 5 = 76045 (ii) Given 5 × 105 + 4 × 104 + 2 × 103 + 3 × 100 = 500000 + 40000 + 2000 + 3 = 542003 (iii) Given 9 × 105 + 5 × 102 + 3 × 101 = 900000 + 500 + 30 = 900530 (iv) Given 3 × 104 + 4 × 102 + 5 × 100 = 3 x 10000 + 4 x 100 + 5 x 1 = 30000 + 400 + 5 = 30405 |
|
| 191. |
Write (5/7) × (5/7) × (5/7) × (5/7) in power notation. |
|
Answer» (5/7) ×(5/7) × (5/7) × (5/7) The product of rational number multiplied several times by itself can be expressed in the power notations as, (5/7)4 |
|
| 192. |
Write the following numbers in the expanded forms :(i) 279404(ii) 3006194(iii) 2806196(iv) 120719(v) 20068 |
|
Answer» (i) 279404 = 2 × 100000 + 7 × 10000 + 9 × 1000 + 4 × 100 + 0 × 10 + 4 × 1 = 2× 105 + 7× 104 + 9 × 103 + 4 × 102 + 0 × 101 + 4 × 100 (ii) 3006194 = 3 × 1000000 + 0 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 10 + 4 × 1 = 3 × 106 + 0 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 4 × 100 (iii) 2806196 = 2 × 1000000 + 8 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 101 + 6 × 100 = 2 × 106 + 8 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 6 × 100 (iv) 120719 = 1 × 100000 + 2 × 10000 + 0 × 1000 + 7 × 100 + 1 × 10 + 9 × 1 = 1 × 105 + 2 × 104 + 0 × 103 + 7 × 102 + 1 × 101 + 9 × 100 (v) 20068 = 2 × 10000 + 0 × 1000 + 0 × 100 + 6 × 10 + 8 × 1 = 2 × 104 + 0 × 103 + 0 × 102 + 6 × 101 + 8 × 100 |
|
| 193. |
Standard form of 12345 is ………………. A) 1.2345 × 104B) 123.45 × 103C) 1.2345 × 105D) 12.345 × 104 |
|
Answer» Correct option is A) 1.2345 × 104 |
|
| 194. |
The standard form of 1, 353, 000,000 cubic kms is ………………. A) 0.1353 × 109 c.c. kms B) 135.3 × 109 c.c. kms C) 1.353 × 109 c.c. kms D) 13.53 × 109 c.c. kms |
|
Answer» Correct option is C) 1.353 × 109 c.c. kms |
|