Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Express (1/3)-1 as a rational number.

Answer»

(1/3)-1

We have:

(1/3)-1 = (-6/1)-1

= (3/1)1 … [∵ (a/b)-n = (b/a) n]

= 3

152.

Express 538 in standard form.

Answer»

 538

A given number is said to be in standard form if it can be expressed as k × 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.

Then,

538 = 5.38 × 102

153.

If 102y = 25, then 10-y equalsA, \(-\frac{1}5\)B.\(\frac{1}{50}\)C.\(\frac{1}{625}\)D.\(\frac{1}5\)

Answer»

102y = 25 

= 10y = x 

= x2 = 52 

= x = 5 

= 1/x = 10-y 

= 1/5

154.

Express (23/25)° as a rational number.

Answer»

(23/25)°

= (23/25)° = 1

Because, by definition, we have a° = 1 for every integer.

155.

Express {(3/2)-1 ÷ (-2/5)-1} as a rational number.

Answer»

{(3/2)-1 ÷ (-2/5)-1}

We know that,

= (3/2)-1= (2/3) [∵ (a/b)-n = (b/a) n]

= (-2/5)-1 = (-5/2)1 … [∵ (a/b)-n = (b/a) n]

Now divide,

= {(2/3) ÷ (-5/2)}

= {(2/3) × (-2/5}

= {(2×-2) / (3×5)

= {-4/15}

156.

Express {(4/3)-1 – (1/4)-1}-1 as a rational number.

Answer»

{(4/3)-1 – (1/4)-1}-1

We know that,

= (4/3)-1= (3/4) [∵ (a/b)-n = (b/a) n]

= (1/4)-1 = (4/1)1 … [∵ (a/b)-n = (b/a) n]

Now subtract,

= {(3/4) – (4/1)}-1

= {(3-16)/4}-1 … [LCM of 4 and 1 is 4]

= {-13/4}-1

= {-4/13}

157.

Express (5-1– 7-1)-1 as a rational number.

Answer»

(5-1 7-1)-1

We know that,

= (5)-1= (1/5)[∵ (a/b)-n = (b/a) n]

= (7)-1 = (1/7)1 … [∵ (a/b)-n = (b/a) n]

Now subtract,

= {(1/5) – (1/7)}-1

= {(7-5)/35}-1 … [LCM of 5 and 7 is 35]

= {2/35}-1

= {35/2}

158.

(- 5) × (- 5) × (- 5) × ………………. × (- 5) (16 times) = A) (- 5)16 B) 16-5C) 16 – 5 D)16 × (- 5)

Answer»

Correct option is A) (- 5)16

(-5) x (-5) x (-5) x.... x(-5) (16 times) = (-5)16

159.

Write the value of \(\sqrt[3]{125\times27}\).

Answer»

\(\sqrt[3]{125\times27}\)

= (53 × 33) 1/3 

= 5 × 3 

= 15

160.

(256)0.16 × (256)0.09 A. 4 B. 16 C. 64 D. 256.25

Answer»

(256)0.16 × (256)0.09 

= (256) 0.16 + 0.09 

= (256) 0.25 

\(4^4\times\frac{1}{4}\)

= 4

161.

Express each of the following as a rational number of the form (p/q):(i) (3/7)2(ii) (7/9)3(iii) (-2/3)4

Answer»

(i) Given (3/7)2

(3/7)2 = (3/7) x (3/7)

= (9/49)

(ii) Given (7/9)3

(7/9)3 = (7/9) x (7/9) x (7/9)

= (343/729)

(iii) Given (-2/3)4

(-2/3)4 = (-2/3) x (-2/3) x (-2/3) x (-2/3)

= ((16/81)

162.

1216 × 12-4 = A) 1212B) 1220C) 2412D) 1264

Answer»

Correct option is A) 1212

1216 x 12-4 = 1216-4 = 1212

163.

\((\frac{1}{64})^0 + (64)^{\frac{-1}{2}}+(32)^{\frac{4}{5}}-(32)^{\frac{-4}{5}}\) is equal to (a) \(16\frac18\)(b) \(17\frac18\)(c) \(17\frac1{16}\)(d) \(-17\frac1{16}\)

Answer»

(c) \(17\frac1{16}\)

Given exp. = 1 + \((8^2)^{-\frac12}+(2^5)^{\frac45}-(2^5)^{-\frac45}\)

= 1 + 8–1 + 24 – 2–4

\(1+ \frac18+16-\frac1{16}=\frac{16+2+256-1}{16}\)

\(\frac{273}{16} = 17\frac1{16}\)

164.

The value of {2-3(2-3)3} 3 isA. 5 B. 125 C. 1/5 D. -125

Answer»

{2-3(2-3)3}

= {2 – 3 (-1)3} 3 

= {2 + 3}

= 53 

= 125

165.

x17 / x15 = A) x32 B) x-2C) x2 D) x1/2

Answer»

Correct option is C) x2

\(\frac{x^{17}}{x^{15}}=\frac{x^{15}\times x^2}{x^{15}}\) = x2

166.

125 when expressed In exponential form A) 52B) 53 C) 54D) 5-3

Answer»

Correct option is B) 53

125 = 5 x 5 x 5 = 53

167.

The value of (2/5)-3 isA. -8/125B. 25/4C. 125/8D. -2/5

Answer»

\((\frac{2}{5})^{-3}=(\frac{5}{2})^3=\frac{5^3}{2^3}=\frac{125}{8}\)

168.

The value of \((-2)^{-5}\) isA. -32B. -1/32C. 32D. 1/32

Answer»

(-2)-5 = \(\frac{1}{(-2)^5}=\frac{1}{-32}=\frac{1\times(-1)}{-32\times(-1)}=\frac{-1}{32}\)

169.

The value of \((-3)^{-4}\) isA. 12 B. 81C. -1/10D. 1/81

Answer»

(-3)-4 = \(\frac{1}{(-3)^4}=\frac{1}{(-1)^4\times(3)^4}=\frac{1}{(3)^4}=\frac{1}{81}\)

170.

Simplify :\(\frac{(6.25)^{\frac12}\times(0.0144)^{\frac12}+1}{(0.027)^{\frac13}\times(81)^{\frac14}}\)(a) 0.14 (b) 1.4 (c) 1 (d) \(1.\overline4\)

Answer»

(d) \(1.\overline4\)

Given exp. = \(\frac{\big((2.5)^2\big)^{\frac12}\times\big((0.12)^2\big)^{\frac12}+1}{\big((0.3)^3\big)^{\frac13}\times\big((3^4)\big)^{\frac14}}\)

\(\frac{2.5\times0.12+1}{0.3\times3}\) 

\(\frac{0.3+1}{0.9} = \frac{1.3}{0.9}=\frac{13}{9}\) = \(1.\overline4\)

171.

x + x + x + ……. + x(m times)= A) xm B) mx C) m + x D) mx

Answer»

Correct option is D) mx

x + x + x +..... + x (m times) = x(1 + 1 + 1 + ....+ 1)(m times)

 = x.m = mx

172.

Find the values of n in each of the following:(i) 52n × 53 = 511(ii) 9 x 3n = 37(iii) 8 x 2n+2 = 32 

Answer»

(i) Given 52n x 53 = 511

= 52n+3 = 511

On equating the coefficients, we get

2n + 3 = 11

⇒2n = 11- 3

⇒2n = 8

⇒ n = (8/2)

⇒ n = 4

(ii)  Given 9 x 3n = 37

= (3)2 x 3n = 37

= (3)2+n = 37

On equating the coefficients, we get

2 + n = 7

⇒ n = 7 – 2  

n = 5

(iii) Given 8 x 2n+2 = 32

= (2)3 x 2n+2 = (2)5      [since 23 = 8 and 25 = 32]
= (2)3+n+2 = (2)5 

On equating the coefficients, we get

3 + n + 2 = 5

⇒ n + 5 = 5

⇒ n = 5 -5

⇒ n = 0

173.

(2-1 – 4-1)2(a) 4 (b) -4 (c) (1/16) (d) (-1/16)

Answer»

(c) (1/16)

We know that,

= (2)-1= (1/2)[∵ (a/b)-n = (b/a) n]

= (4)-1 = (1/4)1 … [∵ (a/b)-n = (b/a) n]

Now subtract,

= {(1/2) – (1/4)} 2

= {(2-1)/4}2 … [LCM of 2 and 4 is 4]

= {1/4}2

= {12/42}

= {1/16}

174.

(5-1 × 3 -1)-1(a) (1/15) (b) (-1/15) (c) 15 (d) -15

Answer»

(c) 15

We know that,

= (5)-1= (1 /5)[∵ (a/b)-n = (b/a) n]

= (3)-1 = (1/3)1 … [∵ (a/b)-n = (b/a) n]

Now multiply,

= {(1/5) × (1/3)}-1

= {(1×1)/ (5×3)}-1

= {1/15}-1

= {15/1}

= 15

175.

(6-1– 8-1)-1 = ?(a) (-1/2) (b) -2 (c) (1/24) (d) 24

Answer»

(D) 24

We know that,

= (6)-1= (1/6)[∵ (a/b)-n = (b/a) n]

= (8)-1 = (1/8)1 … [∵ (a/b)-n = (b/a) n]

  • Now subtract,
  • = {(1/6) – (1/8)}-1

= {(4-3)/24}-1 … [LCM of 6 and 8 is 24]

= {1/24}-1

= {24/1}

= 24

176.

If 4x – 4x-1 = 24, then (2x)x equals A. \(5\sqrt5\)B. \(\sqrt5\)C. \(25\sqrt5\)D. 125

Answer»

4x – 4x – 1 = 24

Let 4x = y

y - \(\frac{y}4\)= 24

4y – y = 96

y = 32

4x = 32

22x = 25 

(2x)x\((2\times\frac{5}{2})^{\frac{5}{2}}\)

(5)5/2 \(25\sqrt5\)

177.

The distance from the earth to the sun is 149600000000 m. Write it in standard form.

Answer»

Distance from earth to sun = 149600000000 m 

In standard form we have, 

149600000000 = 1496 × 100000000 

= 1.496 × 1000 × 100000000 

= 1.496 × 103 × 108 = 1.496 × 1011 m.

178.

Mass of earth is (5.97 x 1024) kg and mass of moon is (7.35 x 1022) kg. What is the total mass of the two?

Answer»

Given, 

Mass of the earth = 5.97 × 1024 kg 

Mass of the moon = 7.35 × 1022 kg 

Now, 

Mass of the earth = 5.97 × 1024 = 5.97 × 10(2+22) = 5.97 × 102 × 1022 = 597 × 1022 

So, 

We can also Wright the mass of the earth as 597 × 1022 kg 

Sum of the masses of the earth and the moon; 

= (597 × 1022) + (7.35 × 1022) = (597+7.35) × 1022 = 604.35 × 1022 kg 

= 6.0435 × 100 × 1022 = 6.0435 × 102 × 1022 = 6.0435 × 10(2+22) = 6.0435 × 1024 kg

179.

Write each of the following numbers in standard form: (i) 0.0006 (ii) 0.00000083 (iii) 0.0000000534 (iv) 0.0027 (v) 0.00000165 (vi) 0.00000000689

Answer»

(i) 0.0006 = \(\frac{6}{10^4}=6\,\times10^{-4}\)

(ii) 0.00000083 = \(\frac{8^3}{10^3}\) = \(\frac{8.3\times10}{10^3}\) = 8.3 x 10(1-8) = 8.3 x 10-7

(iii) 0.0000000534 = \(\frac{534}{10^{10}}\) = \(\frac{5.34\times10^2}{10^{10}}\) = 5.34 x 10(2-10) = 5.34 x 10-8

(iv) 0.0027 = \(\frac{27}{10^4}\) = \(\frac{27\times10}{10^4}\) = 2.7 x 10(1-4) = 2.7 x 10-3

(v) 0.00000165 = \(\frac{165}{10^3}=\frac{1.65\times10^2}{10^3}\) = 1.65 x 10(2-8) = 1.65 x 10-6

(vi) 0.00000000689 = \(\frac{689}{10^{11}}=\frac{6.89\times10^2}{10^{11}}\) = 6.89 x 10(2-11) = 6.89 x 10-9

180.

In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack?

Answer»

Thickness of one book = 20 mm 

Thickness of 5 books = 20 x 5 = 100 mm 

Thickness of one paper = 0.016 mm 

Thickness of 5 papers = 0.016 x 5 = 0.08 mm 

Total thickness of a stack = 100 + 0.08 = 100.08 mm 

= 100.08 x 102/102 = 1.0008 x 102 mm

181.

1 micron = 1/1000000m. Express it in standard form.

Answer»

1 micron = \(\frac{1}{1000000}m=\) 1 × 10-6 m.

182.

Expand the following numbers using exponents.i) 543.67ii) 7054.243iii) 6540.305iv) 6523.450

Answer»

i) 543.67

= (5 × 100) + (4 × 10) + (3 × 100) + (6 / 10) + (7 / 102)

= (5 × 102) + (4 × 10) + (3 × 100) + (6 × 10-1) + (7 × 10-2)   [∵ an = a-n]

ii) 7054.243

= (7 × 1000) + (0 × 100) + (5 × 10) + (4 × 100) + (2 / 10) + (4 / 100) + (3 / 1000)

= (7 × 103) + (0 × 102) + (5 × 101) + (4 × 100) + (2 × 10-1) + (4 × 10-2) + (3 × 10-3)

iii) 6540.305

= (6 × 1000) + (5 × 100) + (4 × 10) + (0 × 100) + (3 / 10) + (0 / 100) + (5 / 1000)

= (6 × 103) + (5 × 102) + (4 × 101) + (0 × 100) + (3 × 10-1) + (0 × 10-2) + (5 × 10-3)

iv) 6523.450

= (6 × 1000) + (5 × 100) + (2 × 10) + (3 × 100) + (4 / 10) + (5 / 100) + (0 / 1000)

= (6 × 103) + (5 × 102) + (2 × 101) + (3 × 100) + (4 × 10-1) + (5 × 10-2) + (0 × 10-3)

183.

Write the following numbers in the standard form. The standard form of the following numbers are(i) 0.0000456(ii) 0.000000529(iii) 0.0000000085(iv) 6020000000(v) 35400000000vi) 0.000437 × 104

Answer»

(i) 0.0000456

= 456 / 10000000 

= 456 × 10-7

(ii) 0.000000529

= 529 / 1000000000 

= 529 × 109

(iii) 0.0000000085

= 85 / 10000000000 

= 85 × 1010

(iv) 6020000000

= 602 × 10000000 

= 602 × 107

(v) 35400000000

= 354 × 100000000 

= 354 × 108

vi) 0.000437 × 104

= 437 / 1000000 × 104

= 437 × 10-6 × 104

= 437 × 10(-6)+4

= 437 × 10-2

184.

Express the following numbers in the usual form.(i) 4.37 × 105(ii) 5.8 × 107(iii) 32.5 × 10-4(iv) 3.71529 × 107(v) 3789 × 10-5(vi) 24.36 × 10-3

Answer»

(i) 4.37 × 105

= 4.37 × 100000

= 437000

(ii) 5.8 × 107

= 5.8 × 10000000

(iii) 32.5 × 10-4

= 32.5 / 104 = 32.5 / 10000

= 0.00325

(iv) 3.71529 × 107

= 3.71529 × 10000000

= 37152900

(v) 3789 × 10-5

= 3789 / 10= 3789 / 100000

= 0.03789

(vi) 24.36 × 10-3

= 24.36 / 10= 24.36 / 1000

= 0.02436

185.

Express the following in exponential form :(i) 6 × 6 × 6 × 6(ii) t × t(iii) b × b × b × b(iv) 5 × 5 × 7 × 7 × 7(v) 2 × 2 × a × a(vi) a × a × a × c × c × c × c × d

Answer»

(i) 6 × 6 × 6 × 6

= 64

(ii) t × t = t2

(iii) b × b × b × b

= b4

(iv) 5 × 5 × 7 × 7 × 7

= 52 × 73

(v) 2 × 2 × a × a

= 22 × a2

(vi) a × a × a × c × c × c × c × d

= a3 × c4 × d

186.

Find the value of :(i) 26(ii) 93(iii) 112(iv) 54

Answer»

(i) 26

= 2 × 2 × 2 × 2 × 2 × 2 = 64

(ii) 93

= 9 × 9 × 9 = 729

(iii) 112

= 11 × 11 = 121

(iv) 54

= 5 × 5 × 5 × 5 = 625.

187.

Write (-8) ×(-8) × (-8) × (-8) × (-8) in power notation.

Answer»

(-8) ×(-8) × (-8) × (-8) × (-8)

The product of rational number multiplied several times by itself can be expressed in the power notations as,

(-8)5

188.

Write (-1/6) ×(-1/6) × (-1/6) in power notation.

Answer»

(-1/6) ×(-1/6) × (-1/6)

The product of rational number multiplied several times by itself can be expressed in the power notations as,

(-1/6)3

189.

Write (-4/3) ×(-4/3) × (-4/3) × (-4/3) × (-4/3) in power notation.

Answer»

(-4/3) ×(-4/3) × (-4/3) × (-4/3) × (-4/3)

The product of rational number multiplied several times by itself can be expressed in the power notations as,

(-4/3)5

190.

Find the number from each of the following expanded forms:(i) 7 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100(ii) 5 × 105 + 4 × 104 + 2 × 103 + 3 × 100(iii) 9 × 105 + 5 × 102 + 3 × 101(iv) 3 × 104 + 4 × 102 + 5 × 100

Answer»

(i) Given 7 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100

 = 7 x 10000 + 6 x 1000 + 0 x 100 + 4 x 10 + 5 x 1

= 70000 + 6000 + 0 + 40 + 5

= 76045

(ii) Given 5 × 105 + 4 × 104 + 2 × 103 + 3 × 100

= 5 x 100000 + 4 x 10000 + 2 x 1000 + 3 x 1

= 500000 + 40000 + 2000 + 3

= 542003

(iii) Given 9 × 105 + 5 × 102 + 3 × 101

= 9 x 100000 + 5 x 100 + 3 x 10

= 900000 + 500 + 30

= 900530

(iv) Given 3 × 10+ 4 × 102 + 5 × 100

= 3 x 10000 + 4 x 100 + 5 x 1

= 30000 + 400 + 5

= 30405

191.

Write (5/7) × (5/7) × (5/7) × (5/7) in power notation.

Answer»

(5/7) ×(5/7) × (5/7) × (5/7)

The product of rational number multiplied several times by itself can be expressed in the power notations as,

(5/7)4

192.

Write the following numbers in the expanded forms :(i) 279404(ii) 3006194(iii) 2806196(iv) 120719(v) 20068

Answer»

(i) 279404

= 2 × 100000 + 7 × 10000 + 9 × 1000 + 4 × 100 + 0 × 10 + 4 × 1

= 2× 105 + 7× 104 + 9 × 103 + 4 × 102 + 0 × 101 + 4 × 100

(ii) 3006194

= 3 × 1000000 + 0 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 10 + 4 × 1

= 3 × 106 + 0 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 4 × 100

(iii) 2806196

= 2 × 1000000 + 8 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 101 + 6 × 100

= 2 × 106 + 8 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 6 × 100

(iv) 120719

= 1 × 100000 + 2 × 10000 + 0 × 1000 + 7 × 100 + 1 × 10 + 9 × 1

= 1 × 105 + 2 × 104 + 0 × 103 + 7 × 102 + 1 × 101 + 9 × 100

(v) 20068

= 2 × 10000 + 0 × 1000 + 0 × 100 + 6 × 10 + 8 × 1

= 2 × 104 + 0 × 103 + 0 × 102 + 6 × 101 + 8 × 100

193.

Standard form of 12345 is ………………. A) 1.2345 × 104B) 123.45 × 103C) 1.2345 × 105D) 12.345 × 104

Answer»

Correct option is A) 1.2345 × 104

194.

The standard form of 1, 353, 000,000 cubic kms is ………………. A) 0.1353 × 109 c.c. kms B) 135.3 × 109 c.c. kms C) 1.353 × 109 c.c. kms D) 13.53 × 109 c.c. kms

Answer»

Correct option is C) 1.353 × 109 c.c. kms