Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Factorise : x2(a - b) - y2(a - b) + z2(a - b)

Answer»

x2(a - b) - y2(a - b) + z2(a - b)

= (a - b) (x2 - y2 + z2)

2.

Solve the question:(i) x2 + xy + 8x + 8y(ii) 15xy − 6x + 5y − 2(iii) ax + bx − ay − by

Answer»

(i) x2 + xy + 8x + 8y 

= x × x + x × y + 8 × x + 8 × y

= x (x + y) + 8 (x + y)

= (x + y) (x + 8)

(ii) 15xy − 6x + 5y − 2 

= 3 × 5 × x × y − 3 × 2 × x + 5 × y − 2

= 3x (5y − 2) + 1 (5y − 2)

= (5y − 2) (3x + 1)

(iii) ax + bx − ay − by 

= a × x + b × x − a × y − b × y

= x (a + b) − y (a + b)

= (a + b) (x − y)

3.

Solve the question:(i) 15pq + 15 + 9q + 25p(ii) z − 7 + 7xy − xyz

Answer»

(i) 15pq + 15 + 9q + 25p 

= 15pq + 9q + 25p + 15

= 3 × 5 × p × q + 3 × 3 × q + 5 × 5 × p + 3 × 5

= 3q (5p + 3) + 5 (5p + 3)

= (5p + 3) (3q + 5)

(ii) z − 7 + 7xy − xyz 

= z − x × y × z − 7 + 7 × x × y

= z (1 − xy) − 7 (1 − xy)

= (1 − xy) (z − 7)

4.

Solve the question:(i) x2 + xy + 8x + 8y(ii) 15xy − 6x + 5y − 2(iii) ax + bx − ay − by

Answer»

(i) x2 + xy + 8x + 8y 

= x × x + x × y + 8 × x + 8 × y

= x (x + y) + 8 (x + y)

= (x + y) (x + 8)

(ii) 15xy − 6x + 5y − 2 

= 3 × 5 × x × y − 3 × 2 × x + 5 × y − 2

= 3x (5y − 2) + 1 (5y − 2)

= (5y − 2) (3x + 1)

(iii) ax + bx − ay − by 

= a × x + b × x − a × y − b × y

= x (a + b) − y (a + b)

= (a + b) (x − y)

5.

Carry out the following divisions. (i) `28x^4 -: 56x` (ii) `-36y^3 -: 9y^2` (iii) `66pq^2r^3 -: 11qr^2` (iv) `34x^3y^3z^3 -: 51xy^2z^3` (v) `12a^8b^8 -: (-6a^6b^4)`

Answer» (i) `(28x^4)/(56x) = (28**x**x3)/(2**28**x) = x^3/2`
(ii)`(-36y^3)/(9y^2) = (-4**9**y^2**y)/(9**y^2) = -4y`
(iii)`(66pq^2r^3)/(11qr^2) = (6**11**p**q**q**r**r^2)/(11**q**r^2) = 6pqr`
(iv)`(34x^3y^3z^3)/(51xy^2z^3) = (2**17**x**x^2**y**y^2**z^3)/(3**17**x**y^2**z^3)=(2x^2y)/3`
(v)`(12a^8b^8)/(-6a^6b^4) = (2**6**a^6**a^2**b^4**b^4)/(-6**a^6**b^4) =-2a^2b^4`
6.

Resolve the quadratic trinomials into factors:12x2 – 17xy + 6y2

Answer»

We have,

12x2 – 17xy + 6y2

The coefficient of x2 is 12

The coefficient of x is -17y

Constant term is 6y2

So, we express the middle term -17xy as -9xy – 8xy

12x2 -17xy+ 6y2 = 12x2 – 9xy – 8xy + 6y2

= 3x (4x – 3y) – 2y (4x – 3y)

= (3x – 2y) (4x – 3y)

7.

Resolve the quadratic trinomials into factors:14x2 + 11xy – 15y2

Answer»

We have,

14x2 + 11xy – 15y2

The coefficient of x2 is 14

The coefficient of x is 11y

Constant term is -15y2

So, we express the middle term 11xy as 21xy – 10xy

14x2 + 11xy- 15y2 = 14x2 + 21xy – 10xy – 15y2

= 2x (7x – 5y) + 3y (7x – 5y)

= (2x + 3y) (7x – 5y)

8.

Resolve the quadratic trinomials into factors:3x2 + 22x + 35

Answer»

We have,

3x2 + 22x + 35

The coefficient of x2 is 3

The coefficient of x is 22

Constant term is 35

So, we express the middle term 22x as 15x + 7x

3x2 + 22x + 35 = 3x2 + 15x + 7x + 35

= 3x (x + 5) + 7 (x + 5)

= (3x + 7) (x+ 5)

9.

Resolve the quadratic trinomials into factors:7x – 6x2 + 20

Answer»

We have,

7x – 6x2 + 20

– 6x2 + 7x + 20

6x2 – 7x – 20

The coefficient of x2 is 6

The coefficient of x is -7

Constant term is -20

So, we express the middle term -7x as -15x + 8x

6x2 – 7x – 20 = 6x2 – 15x + 8x – 20

= 3x (2x – 5) + 4 (2x – 5)

= (3x + 4) (2x – 5)

10.

Resolve the quadratic trinomials into factors:11x2 – 54x + 63

Answer»

We have,

11x2 – 54x + 63

The coefficient of x2 is 11

The coefficient of x is -54

Constant term is 63

So, we express the middle term -54x as -33x – 21x

11x2 – 54x + 63 = 11x2 – 33x – 21x – 6

= 11x (x – 3) – 21 (x – 3)

= (11x – 21) (x – 3)

11.

Factorise: x3(2a-b) + x2(2a-b)

Answer»

By taking 2a-b as a common factor for the above equation we get,

x(2a-b) + x2(2a-b) = (2a-b) (x+ x2)

12.

Factorise: x(a-3) + y(3-a)

Answer»

x(a-3) –y(a-3)

By taking (a-3) as a common factor for the above equation we get,

x(a-3) –y(a-3) = (a-3) (x-y)

13.

Factorise: x(x+3) + 5(x+3)

Answer»

By taking x+3 as a common factor for the above equation we get,

x (x+3) + 5(x+3) = (x+3) (x + 5)

14.

Factorise: -5 -10t + 20t2

Answer»

let’s take HCF of above equation By taking 5 as a common factor for the above equation we get,

-5 -10t + 20t= -5 (1 +2t -4t2)

15.

Froctorise:3ac + 7bc – 3ad – 7bd

Answer»

3ac + 7bc – 3ad – 7bd 

c(3a + 7b)-d(3a + 7b) (3a + 7b) (c-d)

16.

Factorise:3ab + 3a + 2b + 2

Answer»

3ab + 3a + 2b + 2 

= [3 × a × b + 3 × a] + [2 × b + 2

= 3 × a [b + 1] + 2 [b + 1

= (b + 1) (3a + 2)

17.

Find the errors and correct the following mathematical sentence:(3a + 4b)(a – b)= 3a2 – 4a2

Answer»

(3a + 4b)(a – b) = 3a2 – 4a2 

3a(a – b) + 4b(a – b) = 3a2 – 4a2 

3a2 – 3ab + 4ab – 4b2 = – a2 

3a2 + ab – 4b2 ≠ a2   

∴ The given sentence is wrong. 

Correct sentence is (3a + 4b) (a – b) = 3a2 + ab – 4b2

18.

Find the errors and correct the following mathematical sentence:(3x)2 + 4x +7 = 3x2 + 4x +7

Answer»

(3x)2 + 4x +7 = 3x2 + 4x +7 

⇒ (3x)2 = 3x2 

⇒ 9x2 = 3x2 

⇒ 9 = 3 It is not possible 

∴ The given sentence is wrong. 

Correct sentence is (3x)2 + 4x + 7 = 9x2 + 4x + 7.

19.

Find the errors and correct the following mathematical sentence:(2x)2 + 5x = 4x + 5x = 9x

Answer»

(2x)2 + 5x = 4x + 5x = 9x 

⇒ 4x2 + 5x = 4x + 5x 

⇒ 4x2 = 4x

⇒ x2 = x 

⇒ x ≠ √x 

∴ The given sentence is wrong. 

Correct sentence is (2x)2 + 5x = 4x2 + 5x.

20.

Find the errors and correct the following mathematical sentence:(2a + 3)2 = 2a2 + 6a +9

Answer»

(2a + 3)2 = 2a2 + 6a +9

⇒ (2a)2 + 2 × 2a × 3 + 32 = 2a2 + 6a + 9

⇒ 4a2 + 12a + 9 = 2a2+ 6a + 9

⇒ 4a2 – 2a2 = 6a – 12a

⇒ 2a2 = – 6a

⇒ 2a ≠ 6

∴ The given sentence is wrong.

Correct sentence is (2a + 3)2 = 4a2 + 12a + 9.

21.

Find the errors and correct the following mathematical sentence:3(x – 9) = 3x – 9

Answer»

3(x – 9) = 3x – 9 

3(x – 9) = 3x – 9

⇒ 3x – 3 x 9 = 3x – 9 

⇒ 3x – 27 = 3x – 9 

⇒ – 27 ≠ – 9 

∴ The given sentence is wrong. 

Correct sentence is 3(x – 9) = 3x – 27.

22.

Find the errors and correct the following mathematical sentence:2x3 + 1 ÷ 2x3 = 1

Answer»

2x3 + 1 ÷ 2x3 = 1

⇒  \(\frac{2x^3\,+\,1}{2x^3}\) = 1

In the denominator the term T is missing. 

∴ The given sentence is wrong. 

Correct sentence is 2x3 + 1 ÷ 2x3 = 1 + \(\frac{1}{2x^3}\)

23.

Find the errors and correct the following mathematical sentence:3x + 2 ÷ 3x = 2/3x

Answer»

3x + 2 ÷ 3x = \(\frac{2}{3x}\)

⇒ \(\frac{3x\,+\,2}{3x}\) = \(\frac{2}{3x}\)

⇒ 1 + \(\frac{2}{3x}\) = \(\frac{2}{3x}\)

⇒ 1 ≠ 0 

∴ The given sentence is wrong. 

Correct sentence is 3x + 2 ÷ 3x = 1 + \(\frac{2}{3x}\)

24.

Find the errors and correct the following mathematical sentence:4p + 3p + 2p + p – 9p = 0

Answer»

4p + 3p + 2p + p – 9p = 0 

⇒ 10p – 9p = 0 

⇒ p = 0 It is not possible 

∴ The given sentence is wrong.

Correct sentence is 4p + 3p + 2p + p – 9p – p = 0

25.

Factorise : 4c2 + 3c - 10

Answer»

4c2 + 3c - 10 = 4c2 + 8c - 5c - 10

= 4c(c + 2) -5(c + 2)

= (c + 2) (4c - 5)

26.

Factorise :  2x2 + xy - 6y2

Answer»

 2x2 + xy - 6y2 = 2x2 + 4xy - 3xy - 6y2 

= 2x(x + 2y) -3y(x + 2y)

= (x + 2y) (2x-3y)

27.

In the following, you are given the product pq and the sum p + q. Determine p and q.pq = 32 and p + q = – 12

Answer»

pq = 32 and p + q = – 12

p = -8, q = – 4

28.

(8 + x) (14 – x) = ……………. A) 121 – (x – 3)2 B) 12 – (x – 3)2 C) 12 – (x – 31)2 D) 11 – (x- 12)2

Answer»

A) 121 – (x – 3)2 

Correct option is (A) 121 – (x – 3)2

(8 + x) (14 – x) \(=112-8x+14x-x^2\)

\(=112+6x-x^2\)

\(=112+9-9+6x-x^2\)

\(=121-(9-6x+x^2)\)

\(=121-(x^2-2\times x\times3+3^2)\)

\(=121-(x-3)^2\)

29.

70 x4 ÷ 14 x2 = ………………….A) 5x B) 5x-3 C) \(\frac{x^2}{2}\)D) 5x2

Answer»

Correct option is  D) 5x2

Correct option is (D) 5x2

\(70\,x^4\div14\,x^2=\frac{70\,x^4}{14\,x^2}\) \(=5x^2\)

30.

(m2 – 14 m – 32) ÷ (m + 2) = ……………. A) m – 3 B) m + 6 C) m – 6D) m – 16

Answer»

Correct option is  D) m – 16

Correct option is (D) m – 16

\((m^2–14\,m–32)\div(m+2)\) \(=\frac{m^2–14\,m–32}{m+2}\)

\(=\frac{m^2–16\,m+2\,m–32}{m+2}\)

\(=\frac{m(m-16)+2(m-16)}{m+2}\)

\(=\frac{(m-16)(m+2)}{m+2}\)

= m – 16

31.

(6a2 + 30) ÷ (a +5) = ……… A) 6a B) 3a C) a/3D) a

Answer»

Correct option is  A) 6a

Correct option is (A) 6a

\((6a^2+30a)\div(a+5)=\frac{6a^2+30a}{a+5}\)

\(=\frac{6a(a+5)}{a+5}\)

= 6a

32.

Find the common factors of the given terms(i) 12x, 36(ii) 14pq, 28p2q2(iii) 6abc, 24ab2, 12a2b(iv) 16x3, – 4x2, 32x(v) 10pq, 20qr, 30rp(vi) 3x2y3, 10x2y2, 6x2y2z

Answer»

(i) 12x, 36

12x = 2 × 2 × 3 × x

36 = 2 × 2 × 3 × 3

∴ Common factor = 2 × 2 × 3 = 12

(ii) 14pq, 28p2q2

14pq = 2 × 7 × p × q

28p2q2 = 2 × 2 × 1 × p × p × q × q

∴ Common factor = 2 × 7 × p × q = 14pq

(iii) 6abc, 24ab2, 12a2b

6abc = 2 × 3 × a × b × c

24 ab2 = 2 × 2 × 2 × 3 × a × b × b

12 a2b = 2 × 2 × 3 × a × a × b

∴ Common factor = 2 × 3 × a × b = 6ab

(iv) 16x3, – 4x2, 32x

16x3 = 2 × 2 ×2 × 2 × x × x × x

– 4x2 = (- 1) × 2 × 2 × x × x

32x = 2 × 2 × 2 × 2 × 2 × x

∴ Common factor = 2 × 2 × x = 4x

(v) 10pq, 20qr, 30rp

10pq = 2 × 5 × p × q

20qr = 2 × 2 × 5 × q × r

30rp = 2 × 3 × 5 × r × p

∴ Common factor = 2 × 5 = 10

(vi) 3x2y3, 10x2y2, 6x2y2z

3x2y3 = 3 × x × x × y × y × y

10x2y2 = 2 × 5 × x × x × y × y

6x2y2z = 2 × 3 × x × x × y × y × z

∴ Common factor = x × x × y × y = x2y2

33.

Factorise : 6a2 - 3a2b - bc2 + 2c2 

Answer»

6a2 - 3a2b - bc2 + 2c2 

= 6a2 - 3a2b + 2c2 - bc2 

= 3a2(2-b) + c2(2-b)

= (2-b) (3a2 + c2)

34.

x (3x2 – 108) ÷ 3x (x – 6) = …………….. A) x – 3 B) 6 + xC) x + 6 D) 6 – x

Answer»

Correct option is  C) x + 6

Correct option is (C) x + 6

\(x(3x^2–108)\div3x(x–6)\) \(=\frac{x(3x^2–108)}{3x(x–6)}\)

\(=\frac{3x(x^2-36)}{3x(x–6)}\) \(=\frac{3x(x-6)(x+6)}{3x(x–6)}\)

= x + 6

35.

(6x4 + 10x3 + 8x2 ) ÷ 2x2 = …………….A) 3x2 – 5x + 1 B) 3x2 + 5x + 4C) x2 – 5x + 11 D) x2 + 5x + 1

Answer»

B) 3x2 + 5x + 4

Correct option is (B) 3x2 + 5x + 4

\((6x^4+10x^3+8x^2)\div2x^2\) \(=\frac{6x^4+10x^3+8x^2}{2x^2}\)

\(=\frac{2x^2(3x^2+5x+4)}{2x^2}\)

\(3x^2+5x+4\)

36.

Find the common factors of the terms(i) 12x, 36(ii) 2y, 22xy(iii) 14pq, 28p2q2

Answer»

(i) 12x = 2 × 2 × 3 × x

36 = 2 × 2 × 3 × 3

(ii) 2y = 2 × y

22xy = 2 × 11 × x × y

(iii) 14pq = 2 × 7 × p × q

28p2q2 = 2 × 2 × 7 × p × p × q × q

The common factors are 2, 7, p, q.

And, 2 × 7 × p × q = 14pq

37.

30 (a2bc + ab2c + abc2) ÷ 6abc = ……………… A) 5 (a + b + c) B) 6 (a + b) C) a + b + c D) 3 (a – b)

Answer»

A) 5 (a + b + c)

Correct option is (A) 5 (a + b + c)

\(30\,(a^2bc+ab^2c+abc^2)\div6abc\) \(=\frac{30\,(a^2bc+ab^2c+abc^2)}{6abc}\)

\(=\frac{30abc(a+b+c)}{6abc}\)

= 5 (a + b + c)

38.

Factorise : 3a2b - 12a2 - 9b + 36

Answer»

3a2b - 12a2 - 9b + 36

3a2(b - 4) - 9(b - 4)

= (b - 4) (3a2 - 9) = (b - 4) 3(a2 - 3)

= 3(b - 4) (a2 - 3)

39.

Common factors of 8x, 24 are A) 1, 2, x B) 2, 4, x C) 2, 4, 8 D) 8, 4, 3

Answer»

Correct option is  C) 2, 4, 8

Correct option is (C) 2, 4, 8

Common factors of 8x & 24 are 2, 4 & 8.

40.

Factors of m2 – 4m – 21 ……………….. A) (m + 3)2 B) (m + 7) (m – 31) C) (m – 7)2 D) (m – 7) (m + 3)

Answer»

D) (m – 7) (m + 3)

Correct option is (D) (m – 7) (m + 3)

\(m^2–4m–21\) \(=m^2-7m+3m-21\)

= m(m - 7) + 3(m - 7)

= (m – 7) (m + 3)

41.

Find the common factors of the terms(i) 10pq, 20qr, 30rp(ii) 3x2y3, 10x3y2, 6x2y2z

Answer»

(i) 10pq = 2 × 5 × p × q

20qr = 2 × 2 × 5 × q × r

30rp = 2 × 3 × 5 × r × p

The common factors are 2, 5.

And, 2 × 5 = 10

(ii) 3x2y3 = 3 × x × x × y × y × y 

10x3y2 = 2 × 5 × x × x × x × y × y 

6x2y2z = 2 × 3 × x × x × y × y × z

x × x × y × y = x2y2

42.

(12m2 -27) = ?(i) (2m-3)(3m-9)(ii) 3(2m-9)(3m-1)(iii) 3(2m-3)(2m+3)(iv) None of these

Answer»

(iii) 3(2m-3)(2m+3)

By taking 3 as the common factor we get,

By using the formula a2 – b2 = (a – b) (a + b)

(12m2 -27) 

= 3(4m2 -9)

= 3(2m -3) (2m + 3)

43.

Find the common factors of the terms(i) 2x, 3x2, 4(ii) 6abc, 24ab2, 12a2b(iii) 16x3, −4x2, 32x

Answer»

(i) 2x = 2 × x

3x2 = 3 × x × x

4 = 2 × 2

The common factor is 1.

(ii) 6abc = 2 × 3 × a × b × c

24ab2 = 2 × 2 × 2 × 3 × a × b × b

12a2b = 2 × 2 × 3 × a × a × b

The common factors are 2, 3, a, b.

And, 2 × 3 × a × b = 6ab

(iii) 16x3 = 2 × 2 × 2 × 2 × x × x × x −4x2 = −1 × 2 × 2 × x × x

32x = 2 × 2 × 2 × 2 × 2 × x

The common factors are 2, 2, x.

And, 2 × 2 × x = 4x

44.

Find the common factors of the given terms in each.(i) 8x, 24(ii) 3a, 2lab(iii) 7xy, 35x2y3(iv) 4m2, 6m2, 8m3

Answer»

i) 8x = 2 × 2 × 2 × x

24 = 8 × 3 = 2 × 2 × 2 × 3

∴ Common factors of 8x, 24 = 2, 4, 8.

ii) 3a, 21ab

3a = 3 × a

21ab = 7 × 3 × a × b

∴ Common factors of 3a, 21ab = 3, a, 3a.

iii) 7xy, 35x2y3

7xy = 7 × x × y

35x2y3 = 7 × 5 × x × x × y × y × y

∴ Common factors of 7xy, 35x2y= 7, x, y, 7x, 7y, xy, 7xy.

iv) 4m2, 6m2, 8m3

4m2 = 2 × 2 × m × m

6m2 = 2 × 3 × m × m

8m3 = 2 × 2 × 2 × m × m × m

∴ Common factors of 4m2 , 6m2 , 8m= 2, m, m2, 2m, 2m2.

45.

x2 –xz + xy –yz =?(i) (x-y)(x+z)(ii) (x-y)(x-z)(iii) (x+y)(x-z)(iv) (x-y)(z-x)

Answer»

(iii) (x+y)(x-z)

By taking x and y as the common factor we get,

x2 –xz + xy –yz 

= x(x-z) + y(x-z)

= (x-z) (x+y)

46.

Factorise: a2 + 6a – 91

Answer»

First find the two numbers whose sum= 6 and product= -91

Clearly, the numbers are 13 and 7

∴ we get, a2 + 6a – 91 

= a+ 13a – 7a – 91

= a (a+13) – 7(a+13)

= (a+13) (a-7)

47.

(2x – 32x3) = ?(i) 2(x-4)(x+4)(ii) 2x(1-2x)2(iii) 2x(1+2x)2(iv) 2x(1-4x)(1+4x)

Answer»

(iv) 2x (1 – 4x) (1 + 4x)

let us consider (2x – 32x3) = 2x (1 – 16x2) by taking 2x as the common factor

By using the formula a2 – b2 = (a – b) (a + b) 

2x (1 – 4x) (1 + 4x)

48.

(7a2 – 63b2) = ?(i) (7a – 9b) (9a + 7b)(ii) (7a – 9b) (7a + 9b)(iii) 9(a – 3b) (a + 3b)(iv) 7(a – 3b) (a + 3b)

Answer»

(iv) 7(a – 3b) (a + 3b)

let us consider (7a2 – 63b2) = 7(a2 – 9b2) by taking 7 as the common factor

By using the formula a2 – b2 = (a – b) (a + b) 

7 (a – 3b) (a + 3b)

49.

Find and correct the errors in the statement:3/(4x + 3) = 1/4x

Answer»

L.H.S. = 3/(4x + 3) ≠ R.H.S

The correct statement is  3/(4x + 3) =  3/(4x + 3)

50.

Factorise: 3x5 – 48x3

Answer»

3x5 – 48x3 can be written as 3x3(x2 – 16)

By using the formula a2 – b2 = (a+b) (a-b)

Now solving for the above equation

3x3(x2 – 16) 

= 3x3((x)2 – (4)2)

= 3x3(x+4) (x-4)