Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1001.

Let `f(x)`be real valued and differentiable function on `R`such that `f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y))``f(0)`is equalsa. b. c. d. none of theseA. odd functionB. even functionC. odd and even function simultaneouslyD. neither even nor odd

Answer» Correct Answer - A
Putting x = y= 0, we get
`f(0)=(f(0)+f(0))/(1-[f(0)]^(2))`
`rArr" "f(0)[f^(2)(0)+1]=0rArr f(0)=0( "since "f^(2)(0) ne-1).`
Now putting `y=-x`, we get
`f(0)=(f(x)+f(-x))/(1-f(x).f(-x))`
`rArr" "f(x)+f(-x)=0`
`rArr" "f(-x)=-f(x)rArr f(x)` is an odd function.
1002.

Find the domain and range of each of the following real valued functions : f(x)= (ax+b)/(bx-a)f(x) = \(\frac{ax+b}{bx-a}\)

Answer»

f(x) = (ax+b)/(bx-a)

Clearly, 

f(x) is defined for all real values of x, 

Except for the case when bx – a = 0 or x = \(\frac{a}{b}\)

When  x = \(\frac{a}{b}\)

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – \(\{\frac{a}{b}\}\)

Let f(x) = y 

⇒ ax + b = y(bx – a) 

⇒ ax + b = bxy – ay 

⇒ ax – bxy = –ay – b 

⇒ x(a – by) = –(ay + b)

∴ x = \(-\frac{(ay+b)}{a-by}\)

Clearly, 

when a – by = 0 or y = \(\frac{a}{b}\)

x will be undefined as the division result will be indeterminate. 

Hence, 

f(x) cannot take the value \(\frac{a}{b}\).

Thus, 

Range of f = R – \(\{\frac{a}{b}\}\)

1003.

find the domain and range of the function ` f : R to R : f (x) =x^(2) +1`

Answer» Correct Answer - dom (f ) =R and range ( f) `={ y in R : y ge 1}`
Dom (f )= R. Also `y=x^(2) +1 rArr =sqrt(y-1)` ,
x is defined when `y- ge 0, i.e., y ge 1`
`:.` range `(f) {y in R : y ge 1}`
1004.

Let `g(x)=1+x-[x] and f(x)={(-1",",x lt 0),(0",",x=0),(1",",x gt 0):}`, then for all `x, f[g(x)]` is equal toA. xB. 1C. f(x)D. g(x)

Answer» Correct Answer - B
`g(x)=1+x-[x]` is grater than 1
since `x[x] gt 0`
`f[g(x)]," since " f(x) =1 " for all " x gt 0`
1005.

The range of `f(x) =a^(x) ," where " a gt 0 ` isA. `]-oo , 0]`B. `]-oo , 0)`C. `[0,oo)`D. `(0,oo)`

Answer» Correct Answer - D
Clearly `a^(x) gt 0` whetever many be the value of x
`:. ` range (f) = `(0,oo)`
1006.

If `f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2))`, then `f(g(x))`is equal to`f(3x)`(b) `{f(x)}^3`(c) `3f(x)`(d) `-f(x)`

Answer» `f(g(x)) = f((3x+x^3)/(1+3x^2))`
`=log((1+(3x+x^3)/(1+3x^2))/(1-(3x+x^3)/(1+3x^2)))`
`=log((1+3x^2+3x+x^3)/(1+3x^2-3x-x^3))`
`=log((1+x)^3/(1-x)^3)`
`=log((1+x)/(1-x))^3`
`=3log((1+x)/(1-x))`
`=3f(x)`
`:. f(g(x)) = 3f(x)`
1007.

Find the domain of each of the following real valued functions of real variable :i. f(x) = 1/xii. f(x) = \(\frac{1}{x-7}\)iii. f(x) = \(\frac{3x-2}{x+1}\)iv. f(x) = \(\frac{2x+1}{x^2+9}\) v. f(x) = \(\frac{x^2+2x+1}{x^2-8x+12}\)

Answer»

i. f(x) = 1/x

Clearly,

f(x) is defined for all real values of x, 

Except for the case when x = 0. 

When x = 0, 

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – {0}

ii. f(x) = \(\frac{1}{x-7}\) 

Clearly, 

f(x) is defined for all real values of x, 

Except for the case when x – 7 = 0 or x = 7. 

When x = 7,

f(x) will be undefined as the division result will be indeterminate. 

Thus,

Domain of f = R – {7}

iii. f(x) = \(\frac{3x-2}{x+1}\)

Clearly, 

f(x) is defined for all real values of x, 

Except for the case when x + 1 = 0 or x = –1. 

When x = –1, 

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – {–1}

iv. f(x) = \(\frac{2x+1}{x^2+9}\) 

Clearly,

f(x) is defined for all real values of x, 

Except for the case when x2 – 9 = 0. 

x2 – 9 = 0 

⇒ x2 – 32 = 0 

⇒ (x + 3)(x – 3) = 0 

⇒ x + 3 = 0 or x – 3 = 0 

⇒ x = ±3 

When x = ±3, 

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – {–3, 3}

v. f(x) = \(\frac{x^2+2x+1}{x^2-8x+12}\)  

Clearly, 

f(x) is defined for all real values of x, 

except for the case when x2 – 8x + 12 = 0. 

x2 – 8x + 12 = 0 

⇒ x2 – 2x – 6x + 12 = 0 

⇒ x(x – 2) – 6(x – 2) = 0 

⇒ (x – 2)(x – 6) = 0 

⇒ x – 2 = 0 or x – 6 = 0 

⇒ x = 2 or 6 

When x = 2 or 6, 

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – {2, 6}

1008.

Find the domain of each of the following real valued functions of real variable:(i) f (x) = √(x - 2)(ii) f (x) = 1/(√(x2 - 1))(iii) f (x) = √(9 - x2)(iv) f (x) = √(x - 2)/(3 - x)

Answer»

(i) As we know that the square of a real number is never negative.

Now, f(x) takes real values only when x – 2 ≥ 0

x ≥ 2

∴ x ∈ [2, ∞)

∴ The domain (f) = [2, ∞)

(ii) As we know that the square of a real number is never negative.

Now, f(x) takes real values only when x2 – 1 ≥ 0

x2 – 12 ≥ 0

(x + 1) (x – 1) ≥ 0

x ≤ –1 or x ≥ 1

∴ x ∈ (–∞, –1] ∪ [1, ∞)

Here, in addition f(x) is also undefined when x2 – 1 = 0 because denominator will be zero and the result will be indeterminate.

x2 – 1 = 0 ⇒ x = ± 1

Therefore, x ∈ (–∞, –1] ∪ [1, ∞) – {–1, 1}

 x ∈ (–∞, –1) ∪ (1, ∞)

∴ The domain (f) = (–∞, –1) ∪ (1, ∞)

(iii) As we know that the square of a real number is never negative.

Now, f(x) takes real values only when 9 – x2 ≥ 0

9 ≥ x2

x2 ≤ 9

x2 – 9 ≤ 0

x2 – 32 ≤ 0

(x + 3)(x – 3) ≤ 0

x ≥ –3 and x ≤ 3

x ∈ [–3, 3]

∴ The domain (f) = [–3, 3]

(iv) As we know the square root of a real number is never negative.

Now, f(x) takes real values only when x – 2 and 3 – x are both positive and negative.

(a) Here, both x – 2 and 3 – x are positive

x – 2 ≥ 0

x ≥ 2

3 – x ≥ 0

x ≤ 3

Thus, x ≥ 2 and x ≤ 3

∴ x ∈ [2, 3]


(b) Here, both x – 2 and 3 – x are negative

x – 2 ≤ 0 

x ≤ 2

3 – x ≤ 0 

x ≥ 3

Thus, x ≤ 2 and x ≥ 3

However, the intersection of these sets is null set. Hence, this case is not possible.

Thus, x ∈ [2, 3] – {3}

x ∈ [2, 3]

∴ The domain (f) = [2, 3]

1009.

Let `f(x)=a^(x)(a gt 0)` be written as `f(x)=f_(1)(x)+f_(2)(x), " where " f_(1)(x)` is an function and `f_(2)(x)` is an odd function. Then `f_(1)(x+y)+f_(1)(x-y)` equalsA. `2f_(1)(x+y)*f_(2)(x-y)`B. `2f_(1)(x+y)*f_(1)(x-y)`C. `2f_(1)(x)*f_(2)(y)`D. `2f_(1)(x)*f_(1)(y)`

Answer» Correct Answer - D
Given, function `f(x)=a^(x),a gt 0` is written as sum of an even and odd function `f_(1)(x) and f_(2)(x)` respectively.
Clearly, `f_(1)(x) =(a^(x)+a^(-x))/(2) and f_(2)(x)=(a^(x)-a^(-x))/(2)`
So, `f_(1)(x+y)+f_(1)(x-y)`
`=(1)/(2)[a^(x+y)+a^(-(x+y))]+(1)/(2)[a^(x-y)+a^(-(x-y))]`
`=(1)/(2)[a^(x)a^(y)+(1)/(a^(x)a^(y))+(a^(x))/(a^(y))+(a^(y))/(a^(x))]`
`=(1)/(2)[a^(x)(a^(y)+(1)/(a^(y)))+(1)/(a^(x))((1)/(a^(y))+a^(y))]`
` =(1)/(2)(a^(x)+(1)/(a^(x)))(a^(y)+(1)/(a^(y)))`
` =2((a^(x)+a^(-x))/(2))((a^(y)+a^(-y))/(2))= 2f_(1)(x)*f_(1)(y)`
1010.

The range of the function `f(x)=(x^2+x+2)/(x^2+x+1),x in R ,`isA. `(1,infty)`B. `(1,11//7)`C. `(1,7//3]`D. `(1,7//5)`

Answer» Correct Answer - C
Let `y=f(x)=(x^(2)+x+2)/(x^(2)+x+1), x in R`
`therefore y=(x^(2)+x+2)/(x^(2)+x+1)`
`y=1+(1)/(x^(2)+x+1) " "[i.e. y gt 1]` ...(i)
` rArr yx^(2)+yx+y=x^(2)+x+2`
` rArr x^(2) (y-1) + x(y-1)+(y-2)=0, AA x in R`
Since, x is real, `D ge 0`
`rArr (y-1)^(2)-4(y-1)(y-2) ge 0`
` rArr (y-1) {(y-1) -4(y-2)} ge 0`
`rArr (y-1)(-3y+7) ge 0`
`rArr 1 le y le (7)/(3) " ...(ii)" `
From Eqs. (i) and (ii), Range ` in (1,(7)/(3)]`
1011.

Find the domain of each of the following real valued functions of realvariable:`f(x)=sqrt(x-2)`(ii) `f(x)=1/(sqrt(x^2-1))`(iii) `f(x)=sqrt(9-x^2)`(iv) `f(x)=sqrt((x-2)/(3-x))`

Answer» (i) `f(x) = sqrt(x-2)`
As, anything under square root can not be negative,
`:. x - 2 ge 0 => x ge 2`
So, domain of `f(x)` is `x in [2,oo]`.

(ii) `f(x) = 1/sqrt(x^2-1)`
As, anything under square root can not be negative and denominator can not be zero,
`:. x^2-1 gt 0=> (x-1)(x+1) gt 0`
So, domain of `f(x)` is `x in (-oo,-1) uu (1,oo)`.

(iii) `f(x) = sqrt(9-x^2)`
As, anything under square root can not be negative,
`:. 9-x^2 ge 0 =>(3-x)(3+x) ge 0 =>(x-3)(x+3) le 0`
So, domain of `f(x)` is `x in [-3,3]`.

(iv) `f(x) = sqrt((x-2)/(3-x))`
As, anything under square root can not be negative and denominator can not be zero,
`:. x-2 ge 0 and 3-x gt 0`
`=> x ge 2 and x lt 3`
So, domain of `f(x)` is `x in [2,3)`.

1012.

The domain of definition of the function`f(x)=sqrt(sin^(-1)(2x)+pi/6)`for real-valued `x`isA. `[-(1)/(4),(1)/(2)]`B. `[-(1)/(2),(1)/(2)]`C. `(-(1)/(2),(1)/(9))`D. `[-(1)/(4),(1)/(4)]`

Answer» Correct Answer - A
Here, `f(x)=sqrt(sin^(-1)(2x)+(pi)/(6))`, to find domain we must have,
`sin^(-1)(2x)+(pi)/(6) ge 0 " "["but "-(pi)/(2) le sin^(-1)theta le (pi)/(2)]`
` -(pi)/(6) le sin^(-1) (2x) le (pi)/(2)`
`sin(-(pi)/(6)) le 2x le "sin"(pi)/(2) rArr (-1)/(2) le 2x le (1)/(2)`
`(-1)/(4) le x le (1)/(2)`
`because x in [(-1)/(4), (1)/(2)]`
1013.

Let A = {p, q, r, s} and B = {1, 2, 3}. Which of the following relations from A to B is not a function? i. R1 = {(p, 1), (q, 2), (r, 1), (s, 2)} ii. R2 = {(p, 1), (q, 1), (r, 1), (s, 1)} iii. R3 = {(p, 1), (q, 2), (p, 2), (s, 3)} iv. R4 = {(p, 2), (q, 3), (r, 2), (s, 2)}

Answer»

Given, 

A = {p, q, r, s} and 

B = {1, 2, 3} 

i. R1 = {(p, 1), (q, 2), (r, 1), (s, 2)} 

Every element of set A has an ordered pair in the relation R1 and no two ordered pairs have the same first component but different second components. 

Hence, 

The given relation R1 is a function. 

ii. R2 = {(p, 1), (q, 1), (r, 1), (s, 1)} 

Every element of set A has an ordered pair in the relation R2, and no two ordered pairs have the same first component but different second components. 

Hence, 

The given relation R2 is a function. 

iii. R3 = {(p, 1), (q, 2), (p, 2), (s, 3)} 

Every element of set A has an ordered pair in the relation R3

However, 

Two ordered pairs (p, 1) and (p, 2) have the same first component but different second components. 

Hence, 

The given relation R3 is not a function. 

iv. R4 = {(p, 2), (q, 3), (r, 2), (s, 2)} 

Every element of set A has an ordered pair in the relation R4, and no two ordered pairs have the same first component but different second components. 

Hence, 

the given relation R4 is a function.

1014.

Let A = {9, 10, 11, 12, 13} and let f : A → Z be a function given by f(n) = the highest prime factor of n. Find the range of f.

Answer»

Given,

A = {9, 10, 11, 12, 13}

f : A → Z such that 

f(n) = the highest prime factor of n. 

A is the domain of the function f. 

Hence, 

The range is the set of elements f(n) for all n ∈ A. 

We have,

f(9) = highest prime factor of 9 

The prime factorization of 9 = 32 

Thus, 

The highest prime factor of 9 is 3. 

∴ f(9) = 3 

We have,

f(10) = highest prime factor of 10 

The prime factorization of 10 = 2 × 5 

Thus, 

The highest prime factor of 10 is 5. 

∴ f(10) = 5 

We have,

f(11) = highest prime factor of 11 

We know,

11 is a prime number. 

∴ f(11) = 11 

We have,

f(12) = highest prime factor of 12 

The prime factorization of 12 = 22 × 3 

Thus, 

The highest prime factor of 12 is 3. 

∴ f(12) = 3 

We have,

f(13) = highest prime factor of 13 

We know,

13 is a prime number. 

∴ f(13) = 13 

Thus, 

The range of f is {3, 5, 11, 13}.

1015.

The function f is defined by f(x) = {(x2,0≤x≤3)(3x,3≤x≤10)\(f(x) =\begin{cases}x^2, 0≤x≤3\\3x,3≤x≤10\end{cases}\)The relation g is defined by \(g(x) =\begin{cases}x^2, 0≤x≤2\\3x,2≤x≤10\end{cases}\) Show that f is a function and g is not a function.

Answer»

Given,

f(x) = {(x2,0≤x≤3)(3x,3≤x≤10) and

\(g(x) =\begin{cases}x^2, 0≤x≤2\\3x,2≤x≤10\end{cases}\)

Let us first show that f is a function. 

When 0 ≤ x ≤ 3, 

f(x) = x2

The function x2 associates all the numbers 0 ≤ x ≤ 3 to unique numbers in R. 

Hence, 

The images of {x ∈ Z: 0 ≤ x ≤ 3} exist and are unique. 

When 3 ≤ x ≤ 10, 

f(x) = 3x. 

The function x2 associates all the numbers 3 ≤ x ≤ 10 to unique numbers in R. 

Hence, 

The images of {x ∈ Z: 3 ≤ x ≤ 10} exist and are unique. 

When x = 3, 

Using the first definition, we have 

f(3) = 32 = 9 

When x = 3, 

Using the second definition, we have 

f(3) = 3(3) = 9 

Hence, 

The image of x = 3 is also distinct. 

Thus, 

As every element of the domain has an image and no element has more than one image, f is a function. 

Now, 

Let us show that g is not a function. 

When 0 ≤ x ≤ 2, g(x) = x2

The function x2 associates all the numbers 0 ≤ x ≤ 2 to unique numbers in R. 

Hence, 

The images of {x ∈ Z: 0 ≤ x ≤ 2} exist and are unique. 

When 2 ≤ x ≤ 10, g(x) = 3x. 

The function x2 associates all the numbers 2 ≤ x ≤ 10 to unique numbers in R. 

Hence, 

The images of {x ∈ Z: 2 ≤ x ≤ 10} exist and are unique. 

When x = 2, 

Using the first definition, we have 

g(2) = 22 = 4 

When x = 2, 

Using the second definition, we have 

g(2) = 3(2) = 6 

Here, 

The element 2 of the domain is associated with two elements distinct elements 4 and 6. 

Thus, 

g is not a function.