Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

901.

Show that the function f: R → R: f(x) = x5 is one-one and onto.

Answer»

Injectivity:

Consider x, y ∈ R where f(x) = f(y)

We get

x5 = y5

It can be written as

x5 – y5 = 0

By multiplying and dividing by 2 on both sides

(x5/2)2 – (y5/2)2 = 0

We know that

(x5/2 + y5/2) (x5/2 – y5/2) = 0

So we get

x5/2 – y5/2 = 0

where x = y

Hence, f(x) = f(y) is x = y for all x, y ∈ R

f is injective.

Surjectivity:

Consider y as an arbitrary element of R

We know that

f(x) = y

It can be written as

x= y

So we get

x5 – y = 0

Odd degree equation has one real root

Thus, for every real value of y

x5 – y = 0 has real root α where

α 5 – y = 0

So α 5 = y

Thus, f(α) = y

For every y ∈ R there exists α ∈ R where f(α) = y

f is surjective

Thus, f: R → R is bijective.

902.

Let f: {3, 9, 12} → {1, 3, 4} and g: {1, 3, 4, 5} → {3, 9} be defined as f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3), (4, 9), (5, 9)}.Find (i) (g o f) (ii) (f o g)

Answer»

(i) We know that domain (g o f) = domain (f) = {3, 9, 12}

By substituting the values

(g o f) (3) = g{f(3)} = g{1} = 3

(g o f) (9) = g{f(9)} = g{3} = 3

(g o f) (12) = g{f(12)} = g{4} = 9

Hence, g o f = {(3, 3), (9, 3), (12, 9)}

(ii) We know that domain (f o g) = domain (g) = {1, 3, 4, 5}

By substituting the values

(f o g) (1) = f{g(1)} = f{3} = 1

(f o g) (3) = f{g(3)} = f{3} = 1

(f o g) (4) = f{g(4)} = f{9} = 3

(f o g) (5) = f{g(5)} = f{9} = 3

Hence, f o g = {(1, 1), (3, 1), (4, 3), (5, 3)}

903.

Mark (√) against the correct answer in the following:If f(x) = (x2 – 1) and g(x) = (2x + 3) then (g o f) (x) = ? A. (2x2 + 3) B. (3x2 + 2) C. (2x2 + 1) D. None of these

Answer»

Correct Answer is (C) (2x2 + 1) 

f(x) = (x2 – 1)

g(x) = (2x + 3)

∴(g o f) (x) = g(f(x))

\(\Rightarrow g(f(x))=2f(x)+3\)

\(\Rightarrow g(f(x))\)\(=2((x^2-1))+3\)\(=2x^2-2+3\)\(=2x^2+1\)

904.

Let `A = R -{3} " and " B =R -{1}. " Then " f : A to B : f (x) = ((x-2))/((x-3))` isA. one-one and intoB. one -one and ontoC. many-one and intoD. many -one and onto

Answer» Correct Answer - B
`f(x_(1)) =f(x_(2)) rArr .((x_(1) -2))/((x_(1)-3)) =((x_(2)-2))/((x_(3)-3)) rArr x_(1)=x_(2).`So f is one-one
Let `(x-2)/(x-3) =y.` then `x=(3y-2)/(y-1)` Clearly `y ne 1` and `x ne 3`
` :. `f(x) =y and so f is onto
905.

Let f: [0, π/2] → R: f(x) = sin x and g: [0, π/2] → R: g(x) = cos x. Show that each one of f and g is one-one but (f + g) is not one-one.

Answer»

For any two distinct elements x1 and xin [0, π/2]

We know that

sin x≠ sin x2 and cos x1 ≠ cos x2

So we get

f(x1) ≠ f(x2) and g(x1) ≠ g(x2)

Here, both f and g are one-one

We know that

(f + g) (x) = f( x) + g(x) = sin x + cos x

By substituting the values

(f + g) (0) = sin 0 + cos 0 = 1

(f + g) (π/2) = sin π/2 + cos π/2 = 1

We know that 0 ≠ π/2

Here, (f + g) (0) = (f + g) (π/2)

So, f + g is not one-one.

906.

Mark (√) against the correct answer in the following:Let \(f:R-{\frac{-4}{3}}→-{\frac{4}{3}}:f(x)=\frac{4x}{(3x+4)}.\) Then f-1(y) = ?A. \(\frac{4y}{(4-3y)}\)B. \(\frac{4y}{(4y+3)}\)C. \(\frac{4y}{(3y-4)}\)D. None of these

Answer»

Correct Answer is (A) \(\frac{4y}{(4-3y)}\)

f(x) =\(\frac{4x}{(3x+4)}\)

⇒y =\(\frac{4x}{(3x+4)}\)

x ⟺ y

⇒x =\(\frac{4y}{(3y+4)}\)

⇒3yx + 4x = 4y

⇒y(3x - 4) = - 4x

⇒y = \(\frac{4x}{(4-3x)}\)

x ⟺ y

⇒x = \(\frac{4y}{(4-3y)}\)

907.

Let A = {1, 2, 3, 4}. Let f: A → A and g: A → A, defined by f = {(1, 4), (2, 1), (3, 3), (4, 2)} and g = {(1, 3), (2, 1), (3, 2), (4, 4)}.Find (i) g o f (ii) f o g (iii) f o f

Answer»

We know that

range f = {1, 2, 3, 4} and domain (g) = {1, 2, 3, 4}

So range (f) ⊆ domain (g)

(i) We know that domain (g o f) = domain (f) = {1, 2, 3, 4}

By substituting the values

(g o f) (1) = g{f(1)} = g(4) = 4

(g o f) (2) = g{f(2)} = g(1) = 3

(g o f) (3) = g{f(3)} = g(3) = 2

(g o f) (4) = g{f(4)} = g(2) = 1

Therefore, g o f = {(1, 4), (2, 3), (3, 2), (4, 1)}

(ii) We know that domain (f o g) = domain (g) = {1, 2, 3, 4}

By substituting the values

(f o g) (1) = f{g(1)} = f(3) = 3

(f o g) (2) = f{g(2)} = f(1) = 4

(f o g) (3) = f{g(3)} = f(3) = 2

(f o g) (4) = f{g(4)} = f(4) = 2

Therefore, f o g = {(1, 3), (2, 4), (3, 2), (4, 2)}

(iii) We know that domain (f o f) = domain (f) = {1, 2, 3, 4}

By substituting the values

(f o f) (1) = f{f(1)} = f(4) = 2

(f o f) (2) = f{f(2)} = f(1) = 4

(f o f) (3) = f{f(3)} = f(3) = 4

(f o f) (4) = f{f(4)} = f(2) = 1

Therefore, f o f = {(1, 2), (2, 4), (3, 3), (4, 1)}

908.

Mark (√) against the correct answer in the following:If \(f(x)=\frac{(4x+3)}{(6x-4)},x\neq\frac{2}{3}\) then (f o f) (x) = ?A. xB. (2x - 3)C. \(\frac{4x-6}{3x+4}\)D. None of these

Answer»

Correct Answer is (A) x

f(x) = \(\frac{4x-6}{3x+4}\)

\(\Rightarrow f(f(x))=\frac{4f(x)+3}{6f(x)-4}=(fof)(x)\)

\(\Rightarrow f(f(x))=\frac{4(\frac{4x+3}{6x-4})+3}{6(\frac{4x+3}{6x-4})-4}\)

\(\Rightarrow f(f(x))=\frac{16x+12+18x-12}{24x+18-24x+16}\)\(=\frac{34x}{34}\)= x

909.

Show that the function f: N → N: f(x) = x2 is one-one into.

Answer»

Consider N as the set of all natural numbers

It is given that f: N → N: f(x) = x2 Ɐ x ∈ N

We know that

f(x1) = f(x2)

It can be written as

x12 = x22

So we get

x12 – x22 = 0

We get

(x1 – x2) (x1 + x2) = 0

Here, (x1 – x2) = 0 where x1 = x2

Hence, f is one-one.

Consider A = {1, 2, 3, 4} and B = {1, 4, 9, 16, 25}

Here, f: A → B: f(x) = x2

By substituting the values

f(1) = 12 = 1

f(2) = 22 = 4

f(3) = 32 = 9

f(4) = 42 = 16

Hence, every moment in A has unique image in B. Here, ∃ 25 ∈ B which has no pre-image in A f is into.

910.

Show that the function f: R → R: f(x) = 1 + x2 is many-one into.

Answer»

It is given that

f(x) = 1 + x2

By substituting values we get

f(-1) = 1 + (-1)2 = 2

f(1) = 1 + 12 = 2

Hence, f is many one.

Consider y = 1 + x2

It can be written as

x = √(y – 1)

If y <1 then we know that √(y – 1) is imaginary

O ∈ R has no pre image in R

Hence, f is into.

911.

Show that the function f: Z → Z: f(x) = x3 is one-one and into.

Answer»

Consider x1, x2 ∈ Z

We know that

f(x1) = f(x2)

So we get

x13 = x23

where x= x2

Hence, f is one-one

Consider 2 ∈ Z, there exists no x ∈ Z where x3 = 2

Here, 2 ∈ Z has no pre-image in Z

Hence, f is into.

912.

Let `A={x:xepsilonR-}f` is defined from `ArarrR` as `f(x)=(2x)/(x-1)` then `f(x)` is (a) Surjective but nor injective (b) injective but nor surjective (c) neither injective surjective (d) injectiveA. injective but not surjectiveB. not injectiveC. surjective but not injectiveD. neither injective nor surjective

Answer» Correct Answer - A
We have a function `f:A to R "defined as, " f(x)=(2x)/(x-1)`
One-one let `x_(1),x_(2) in A` such that
`f(x_(1))=f(x_(2))`
`rArr (2x_(1))/(x_(1)-1)=(2x_(2))/(x_(2)-1)`
`rArr 2x_(1)x_(2)-2x_(1)=2x_(1)x_(2)-2x_(2)`
`rArr x_(1)=x_(2)`
Thus, `f(x_(1))=f(x_(2))` has only one solution `x_(1)=x_(2)`
` therefore` f(x) is one-one (injective)
Onto Let `x = 2 " then " f(2)=(2xx2)/(2-1)=4`
But x = 2 is not in the domain, and f(x) is one-one function
` therefore f(x)` can never be 4.
similarly, f(x) can not take many values.
Hence, f(x) is into (not surjective).
`therefore f(x)` is injective but not surjective.
913.

If `F(x) and G(x)` are even and odd extensions of the functions `f(x) = x|x|+ sin|x|+ xe^x`, where `x in (0, 1), g(x) = cos|x| + x^2-x`, is where `x in (0, 1)` respectively to the ars interval `(-1, 0)` then `F(x)+G(x) `in `(-1,0)` isA. `sinx +cosx +xe^(-x)`B. `-(sin x +cos x +xe^(-x))`C. `-(sin x +cos x +x + xe^(-x))`D. `-(sin x +cos x +x^(2)+xe^(-x))`

Answer» Correct Answer - C
`f(x)=f(-x)` where `f(x)=x|x|+sin|x|+xe^(x)`,
`therefore" "F(x)=x^(2)-sinx-xe^(-x)" (i)"`
Also, `g(x)=-g(-x)`, where `g(x)=cosx+x^(2)-x`
`therefore" "G(x)=-(cosx+x^(2)+x)=-cosx-x^(2)-x" (ii)"`
`therefore" "F(x)+G(x)=-sinx-xe^(-x)-cosx-x`
`=-(sinx+cosx+x+x+ex^(-x))`
914.

Let N be the set of numbers and two functions f and g be defined as `f,g:N to N` such that `f(n)={((n+1)/(2), ,"if n is odd"),((n)/(2),,"if n is even"):}` and `g(n)=n-(-1)^(n)`. Then, fog is(A) one-one but not onto(B) onto but not one-one(C) both one-one and onto(D) neither one-one nor ontoA. one-one but not ontoB. onto but not one-oneC. both one-one and ontoD. neither one-one nor onto

Answer» Correct Answer - B
Given, `f(n)={((n+1)/(2)", if n is odd"),((n)/(2)", if n is even,"):}`
and `g(n)=n-(-1)^(n)={(n+1", if n is odd"),(n-1", if n is even"):}`
Now, `f(g(n))={(f(n+1)", if n is odd"),(f(n-1)", if n is even"):}`
`={((n+1)/(2)", if n is odd"),((n-1+1)/(2)=(n)/(2)", if n is even"):}`
`=f(x)`
[ `because ` if in odd, then (n+1) is even and if n is even, then (n-1) is odd]
Clearly, function is not one-one as f(2) = f(1) = 1
But it is onto function.
[ `because " If " m in N ` (codomain) is odd, then `2m in N` (doamain) if `m in N` codomain is even, then
`2m-1 in N`(domain) such that f(2m-1) = m]
`therefore` Function is onto but not one-one.
915.

Let Ro be the set of all nonzero real numbers. Then, show that the function f: Ro → Ro: f(x) = 1/x is one-one and onto.

Answer»

We know that

f(x1) = f(x2)

It can be written as

1/x1 = 1/x2

So we get

x1 = x2

Hence, f is one-one.

Take y = 1/x

It can be written as

x = 1/y

Each y in co domain Ro there exists 1/y in domain Ro where f(1/y) = 1/(1/y) = y

Hence, f is onto.

916.

Show that the function f : Z → Z : f (x) = x3 is one-one and into.

Answer»

To prove: function is one-one and into

Given: f : Z → Z : f (x) = x3

Solution: We have,

f(x) = x3

For, f(x1) = f(x2)

⇒ x13 = x23

⇒ x1 = x2

When, f(x1) = f(x2) then x1 = x2

∴ f(x) is one-one

f(x) = x3

Let f(x) = y such that \(y\in Z\)

⇒ y = x3

\(\Rightarrow x=\sqrt[3]{y}\)

If y = 2, as \(y\in Z\)

Then we will get an irrational value of x, but \(x\in Z\)

Hence f(x) is into

Hence Proved

917.

Mark (√) against the correct answer in the following: Let f : N → X : f(x) = 4x2 + 12x + 15. Then, f-1(y) = ?A. \(\frac{1}{2}(\sqrt{y-4}+3)\) B. \(\frac{1}{2}(\sqrt{y-6}-3)\)C. \(\frac{1}{2}(\sqrt{y-4}+5)\)D. None of these

Answer»

Correct Answer is (B) \(\frac{1}{2}(\sqrt{y-4}+3)\)

f(x) = 4x2 + 12x + 15

⇒y = 4x2 + 12x + 15

⇒y = (2x + 3)2 + 6

⇒√(y - 6) = 2x + 3

⇒ \(\frac{1}{2}(\sqrt{y-4}+3)\) = x

f-1(y) =\(\frac{1}{2}(\sqrt{y-4}+3)\)

918.

Let `f : N to N : f (n) = {underset((n)/(2), " when n is even ")( (1)/(2) (n+1) , " when n is odd ")` Then f isA. one-one and intoB. one-one and ontoC. many-one and intoD. many- one and into

Answer» Correct Answer - D
f(1)=(2) shows that f is many -one
if n is odd then (2n-1) is odd and f (2n-1) =n ltbr. If n is even then 2n is even and f(2n)=n.
`:. ` f is onto.
919.

Let R0 be the set of all non zero real numbers. Then, show that the function \(f:R_0→R_0:f(x)=\frac{1}{x}\) is one-one and onto.

Answer»

To prove: function is one-one and onto

Given: \(f:R_0→R_0:f(x)=\frac{1}{x}\)

We have,

\(f(x)=\frac{1}{x}\)

For, f(x1) = f(x2)

\(\Rightarrow \frac{1}{x_1}=\frac{1}{x_2}\)

⇒ x1 = x2

When, f(x1) = f(x2) then x1 = x2

∴ f(x) is one-one

\(f(x)=\frac{1}{x}\)

Let f(x) = y such that \(y\in R_0\)

\(\Rightarrow y=\frac{1}{x}\)

\(\Rightarrow x=\frac{1}{y}\)

Since \(y\in R_0\)

\(\Rightarrow \frac{1}{y}\in R_0\)

⇒ x will also \(\in R_0\), which means that every value of y is associated with some x

∴ f(x) is onto

Hence Proved

920.

Let `f : Q to Q : f(x) =(2x +3). " Then " f^(-1) (y)=?`A. `(2x -3)`B. `(1)/((2y-3))`C. `(1)/(2) (y-3)`D. none of these

Answer» Correct Answer - C
`y=2x+3 rArr x=(1)/(2) (y-3) rArr f^(-1) (y) =(1)/(2) (y-3)`
921.

Let `f : N to X : f(x) =4x^(2) +12x +15 . " Then " f^(-1)(y)=?`A. `(1)/(2) (sqrt(y-4+)+3)`B. `(1)/(2) (sqrt(y-6)-3)`C. `(1)/(2) (sqrt(y-4)+5)`D. none of these

Answer» Correct Answer - B
`y=4x^(2) +12x + 15 =(2x+3)^(2)+6 rArr x=(1)/(2) (sqrt(y-6)-3)`
`:. , f^(-1) (y) =(1)/(2) (sqrt(y-6)-3)`
922.

Show that the function f : R → R : f(x) = 1 + x2 is many-one into.

Answer»

To prove: function is many-one into

Given: f : R → R : f(x) = 1 + x2

We have,

f(x) = 1 + x2

For, f(x1) = f(x2)

⇒ 1 + x12 = 1 + x22

⇒ x12 = x22

⇒ x12 - x22 = 0

⇒ (x1 – x2) (x1 + x2) = 0

⇒ x1 = x2 or, x1 = –x2

Clearly x1 has more than one image

∴ f(x) is many-one

f(x) = 1 + x2

Let f(x) = y such that \(y\in R\)

⇒ y = 1 + x2

⇒ x2 = y – 1

\(\Rightarrow x=\sqrt{y-1}\)

If y = 3, as \(y \in R\)

Then x will be undefined as we can’t place the negative value under the square root

Hence f(x) is into

Hence Proved

923.

Let \(f:R→R:f(x)=\frac{2x-7}{4}\) be an invertible function. Find f-1.

Answer»

To find: f-1

Given: \(f:R→R:f(x)=\frac{2x-7}{4}\)

We have,

\(f(x)=\frac{2x-7}{4}\)

Let f(x) = y such that \(y\in R\)

\(\Rightarrow y=\frac{2x-7}{4}\)

⇒ 4y = 2x – 7

⇒ 4y + 7 = 2x

\(\Rightarrow x=\frac{4y+7}{2}\)

\(\Rightarrow f^{-1}=\frac{4y+7}{2}\)

\(f^{-1}(y)=\frac{4y+7}{2}\) for all \(y\in R\) 

924.

Check if the following function have an inverse function. If yes, find the inverse function.f(x) = 9x3 + 8

Answer»

f(x) = 9x3 + 8

Let f(x1 ) = f(x2)

\(\therefore9x^3_1+8=9x^3_2+8\) 

\(\therefore\) x1 = x2

∴ f is a one-one function.

∴ f(x) = 9x3 + 8 = y, (say)

\(\therefore\) x = \(\sqrt[3]{\frac{y-8}9}\) 

∴ For every y we can get x.

∴ f is an onto function.

\(\therefore\) x = \(\sqrt[3]{\frac{y-8}9}\) = f-1(y)

Replacing y by x, we get

f-1(x) = \(\sqrt[3]{\frac{y-8}9}\)

925.

Check if the following function have an inverse function. If yes, find the inverse function.f(x) = 8

Answer»

f(x) = 8 = y (say)

For every value of x, the value of the function f is the same.

∴ f is not one-one i.e. (many-one) function.

∴ f does not have the inverse.

926.

`f(x)=sin[x]+[s in x],0A. `{{:(0",",0ltxlt1),(1+sin1",",1lexlt(pi)/(4)):}`B. `{{:((1)/(sqrt(2))",",0ltxlt(pi)/(4)),(1+(1)/(2)+(1)/(sqrt2)+(sqrt3)/(2)",",(pi)/(4)lexlt(pi)/(4)):}`C. `{{:(0",",0ltxlt1),(sin1",",1lexlt(pi)/(2)):}`D. `{{:(0",",0ltxlt(pi)/(2)),(1",",(pi)/(4)ltxlt1),(sin1",",1lexle(pi)/(4)):}`

Answer» Correct Answer - C
`0ltxlt(pi)/(2)`
`therefore" "[x]={{:(0,"if,0ltxlt1),(1,if,1lexlt(pi)/(2)):}`
`rArr" "sin[x]={{:(sin0=0,if,0ltxlt1),(sin1,if,1lexlt(pi)/(2)):}`
we have `0sinxlt1` when `0ltxlt(pi)/(2).`
`therefore" "[sinx]=0" for "0ltxlt(pi)/(2)`
`therefore" "sin[x]+[sinx]=({:(0,if,0ltxlt1),(sin1,if,1lexlt(pi)/(2)):}`
927.

For non-negative integers m and n a function is defined as follows f(m,n) = {n+1 if m=0; f(m-1,1) if m!=0, n=0}` Then the value of f(1,1) isA. 1B. 2C. 3D. 4

Answer» Correct Answer - C
`f(1,1)=f(0,f(1,0))=f(0,f(0,1))=f(0,2)=3`
928.

Let `f: R-{-4/3}->R`be a function as `f(x)=(4x)/(3x+4)`. The inverse of f is map, `g: R a ngef->R-{-4/3}`given by.(a) `g(y)=(3y)/(3-4y)` (b) `g(y)=(4y)/(4-3y)`(c) `g(y)=(4y)/(3-4y)` (d) `g(y)=(3y)/(4-3y)`A. `(4y)/((4-3y))`B. `(4y)/((4y+3))`C. `(4y)/((3y-4))`D. none of these

Answer» Correct Answer - A
`y=(4x)/(3x+4) rArr x =(4x)/((4-3y)) rArr f^(-1) (y) =(4y)/((4-3y))`
929.

There are exactly two distinct linear functions, ______ and ______,which map [-1,1] onto [0,2].

Answer» Correct Answer - `y=x+1 and y = -x+1`
Let `y = ax + b and y = cx + d` be two linear functions.
When `x = -1, y = 0 and x = 1, y = 2`, then
` 0 = -a + b and a+ b = 2 rArr a = b = 1`
`therefore y=x+1 " ...(i)" `
Again, when ` x = -1,y= 2 and x=1, y=0,` then
`-c+d=2 and c+d =0`
`rArr d=1 and c= -1`
` therefore y = -x+1 " ...(ii)" `
Hence, two linear functions are `y=x+1 and y=-x+1`
930.

If and `phi(x)=1/(1+e^(-x))` `S=phi(5) +phi(4) +phi(3) + ..+phi(-3) + phi (-4) + phi(-5)` then the value of S isA. 5B. `11//2`C. 6D. `13//2`

Answer» Correct Answer - B
Here `phi(-x)=(1)/(1+e^(x)).`
`"So, "phi(x)+phi(-x)=(1)/(1+e^(-x))+(1)/(1+e^(x))`
`=(e^(x))/(e^(x)+1)+(1)/(1+e^(x))=(e^(x)+1)/(e^(x)+1)=1`
`therefore" S"={phi(5)+phi(-5)}+...+{phi(1)+phi(-1)}+phi(0)`
`=1+1+1+1+1+phi(0)=5+(1)/(1+e^(0))=5+(1)/(2)=(11)/(2)`
931.

Which of the following functions is not an are not an insjective map(s) ?A. `f(x)=|x+1|, x in[-1,oo]`B. `g(x)=x+(1)/(x), x in (0,oo)`C. `h(x)=x^(2)+4x-5, x in (0,oo)`D. `k(x)=e^(-x), x in[0,oo]`

Answer» Correct Answer - B
932.

Find gof and fog when f: R → R and g: R → R is defined by (i) f(x) = 2x + 3 and g(x) = x2 + 5(ii) f(x) = 2x + x2 and g(x) = x3(iii) f(x) = x2 + 8 and g(x) = 3x3 + 1

Answer»

(i) Given function, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

Also given f(x) = 2x + 3 and g(x) = x2 + 5

Now, (gof)(x) = g(f(x))

= g(2x + 3)

= (2x + 3)2 + 5

= 4x+ 9 + 12x + 5

=4x+ 12x + 14

Then, (fog)(x) = f(g(x))

= f(x2 + 5)

= 2(x2 + 5) + 3

= 2x2+ 10 + 3

= 2x2 + 13

(ii) Given function, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = 2x + x2 and g(x) = x3

(gof)(x)= g(f(x))

= g(2x + x2)

= (2x + x2)3

Now, (fog)(x) = f(g(x))

= f(x3)

= 2(x3) + (x3)2

= 2x+ x6

(iii) Given function, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = x2 + 8  and g(x) = 3x3 + 1

(gof)(x) = g(f(x))

= g(x2 + 8)

= 3(x+ 8)3 + 1

Then, (fog)(x) = f(g(x))

= f(3x3 + 1)

= (3x+ 1)2 + 8

= 9x6 + 6x+ 1 + 8

= 9x+ 6x+ 9

933.

Let f(x)=x amd g(x)=|x| for all `x in R`. Then the function `phi(x)"satisfying"{phi(x)-f(x)}^(2)+{phi(x)-g(x)}^(2)` =0 isA. `phi(x)=x, x in[0,oo]`B. `phi(x)=x, x inR`C. `phi(x)=-x, x in(-oo,0)`D. `phi(x)=-x+|x|, x in R`

Answer» Correct Answer - A
934.

Let `f:R to R` be a function defined by `f(x)=(x^(2)-8)/(x^(2)+2)`. Then f isA. one-one but not ontoB. one-one and ontoC. one but not one-oneD. neither one-one nor onto

Answer» Correct Answer - D
935.

`f:R to R` is defined by f(x)=`=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2)))`, isA. one-one but not ontoB. many-one but ontoC. one-one and ontoD. neither one-one nor onto

Answer» Correct Answer - A
936.

`A = { x // x in R, x != 0, -4

Answer» Correct Answer - A
937.

Let `f:(-oo,2] to (-oo,4]` be a function defined by `f(x)=4x-x^(2)`. Then, `f^(-1)(x)` isA. `2-sqrt(4-x)`B. `2+sqrt(4-x)`C. `2pm sqrt(4-x)`D. not defined

Answer» Correct Answer - A
938.

If `f:R to R and g:R to R` are defined by `f(x)=(2x+3) and g(x)=x^(2)+7`, then the values of x such that g(f(x))=8 areA. 1,2B. `-1,2`C. `-1,-2`D. `1,-2`

Answer» Correct Answer - C
939.

Let `f(x)=x, g(x)=1//x and h(x)=f(x) g(x).` Then, h(x)=1, ifA. x is any rational numberB. x is a non-zero real numberC. x is a real numberD. x is a rationa number

Answer» Correct Answer - B
940.

If the functions of `f` and `g` are defined by `f(x)=3x-4` and `g(x)=2+3x` then `g^(-1)(f^(-1)(5))`A. 1B. `1//2`C. `1//3`D. `1//4`

Answer» Correct Answer - C
941.

Let `X` and `Y` be subsets of R,the set of all real numbers. The function `f: X -> Y` defined by `f(x) = x^2` for `x in X` is one-one but not onto ifA. `X=Y=R^(+)`B. `X=R, Y=R^(+)`C. `X=R^(+), Y=R`D. `X=Y=R`

Answer» Correct Answer - C
942.

Let `E={1,2,3,4} and F={1,2}`. Then, the number of onto function form E to F is(A) 14(B) 16(C) 12(D) 8A. 14B. 16C. 12D. 8

Answer» Correct Answer - A
The number of onto function from
`E={1,2,3,4} " to " F={1,2}`
`=` Total number of functions which map E to F `-` Number of functions for which map `f(x) = 1 and f(x) = 2 " for all "x in E=2^(4)-2=14`
943.

`f(x)={(x", if x is rational"),(0", if x is irrational"):}, g(x)={(0", if x is rational"),(x", if x is irrational"):}` Then, `f-g` is(A) one-one and onto(B) one-one but nor onto(C) onto but not one-one(D) neither one-one nor ontoA. one-one and intoB. one-one but nor ontoC. onto but not one-oneD. one-one nor onto

Answer» Correct Answer - D
Let `phi (x)=f(x)-g(x)={(x", "x in Q),(-x", "x notin Q):}`
Now, to check one-one.
Take any straight line parallel to X-axis which will intersect `phi(x)` only at one point.
`rArr phi(x)` is one-one.
To check onto.
As `f(x)={(x", "x in Q),(-x", "x notin Q):}`, which shows
y = x and y = -x for rational and irrational values `rarr y in ` real numbers.
`therefore="Codomain"=rArr "onto" `
Thus, `f-g` is one-one and onto.
944.

Define string.

Answer»

The term string is defined as a character array, terminated with a null character [‘\0’]

945.

What is the function of sin()?

Answer» The sin() is a mathematical function that returns sine value for the given argument represented in radians.
946.

What can you do with the eval function?

Answer»

Eval(s) evaluates an expression contained in a string s and returns the resulting object.

947.

When is mathematical function “fabs()” used in C++?

Answer»

The fabs() mathematical function is used to return the absolute value of the given argument.

948.

What is sys.argv?

Answer»

A list containing the program name and all the command-line arguments to a program.

949.

Given the program from scitools.StringFunction import StringFunction import sys formula = sys.argv[1] f = StringFunction(formula) print f(2) Will this input work? Unix/DOS &gt; python function.py ‘t**2’

Answer»

No, This input will not work

950.

Write the output of sin(O)?

Answer»

Returns the zero.