Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

851.

Mark (√) against the correct answer in the following: If f(x) = 8x3 and g(x) = x1/3 then (g o f) (x) = ? A. x B. 2x C. \(\frac{x}{2}\)D. 3x2

Answer»

Correct Answer is (B) 2x

f(x) = 8x3

g(x) = x1/3

\(\Rightarrow (gof)(x)=(f(x))^{1/3}\)\(=(8x^3)^{1/3}=2x\)

852.

If f (x) = [4 – (x – 7)3]1/5 is a real valued function, then show that f is invertible and find f – 1.

Answer»

For f to be invertible, f should be bijective. 

One-One 

Let x1, x2 be any arbitrary value ∈ R, then 

f (x1) = f (x2

⇒ [4 – (x1 – 7)3]1/5 = [4 – (x2 – 7)3]1/5 

⇒ 4 – (x1 – 7)3 = 4 – (x2 – 7)3 (Putting both the sides to power 5) 

⇒ (x1 – 7)3 = (x2 – 7)

⇒ x1 – 7 = x2 – 7 (Taking cube root of both the sides) 

⇒ x1 = x2 

f is one-one.

Onto 

Let y = f (x) = [4 – (x – 7)3]1/5 

⇒ y5 = 4 – (x – 7)3 ⇒ (x – 7)3 = 4 – y5

⇒ x - 7 = \(\sqrt[3]{4-y^5} \implies x = \sqrt[3]{4-y^5}\) + 7 ... (i)

Thus for every y ∈ R, there exists an x = \(\big(\sqrt[3]{4-y^5} +7\big)\) ∈ R 

⇒ f is onto.

∴  From (i)  x = f -1(y) = \(\big(\sqrt[3]{4-y^5} +7\big)\) 

or, f -1(x) = \(\big(\sqrt[3]{4-y^5} +7\big)\) (substituting x for y).

853.

If \(\ f(x) =\begin{cases}2x-1 \,, & \quad \text{when } x \leq 0\\x^2 \,, & \quad \text {when }x >0\end{cases}\) , then find \(f\big(\frac{3}{4}\big)\, \,and\,\, f\big(-\frac{3}{4}\big)\) .

Answer»

\(f\big(\frac{3}{4}\big)\) = \(\big(\frac{3}{4}\big)^2\) = \(\frac{9}{16}\) as f (x) = x2 when x > 0

\(f\big(-\frac{3}{4}\big)\) =  \(\times\) \(\big(\frac{-3}{4}\big)\) - 1

\(-\frac{3}{2}\) -1 

\(-\frac{5}{2}\) as f (x) = 2x – 1 when x ≤ 0

854.

Let `A={1,2,3}, B={4,5,6,7}`and let `f={(1,4), (2,5), (3,6)}`be afunction from `A`to `B`. State whether `f`is one-oneor not.

Answer» Correct Answer - Yes
`f(1)=4, f(2) =5 "and " f(3)=6`
Thus different elements in A have different images in B .
Hence , f is one-one.
855.

Let f:(2, ∞) → R: f(x) = \(\sqrt{x-2}\), and g: (2, ∞) → R: g(x) = \(\sqrt{x+2}\) Find: (i) (f + g) (x) (ii) (f - g) (x) (iii) (fg) (x)

Answer»

Given

 f(x) = \(\sqrt{x-2}\): x > and g(x) = \(\sqrt{x+2}\): x > 2

(i) To find: (f + g) (x) 

Domain(f) = (2, ∞) 

Range(f) = (0, ∞) 

Domain(g) = (2, ∞) 

Range(g) = (2, ∞) 

(f + g) (x) = f(x) + g(x)

\(\sqrt{x-2}\) + \(\sqrt{x+2}\)

Therefore,

(f + g) (x) = \(\sqrt{x-2}\) + \(\sqrt{x+2}\)

(ii) To find:(f - g)(x)

Range(g) ⊆ Domain(f) 

Therefore, 

(f - g)(x) exists. 

(f - g)(x) = f(x) – g(x)

\(\sqrt{x-2}\) + \(\sqrt{x+2}\)

Therefore,

(f - g) (x) = \(\sqrt{x-2}\) - \(\sqrt{x+2}\)

(iii) To find:(fg)(x) 

(fg)(x) = f(x).g(x)

\(\sqrt{(x-2)}\) .\(\sqrt{(x+2)}\)

\(\sqrt{(x-2)(x+2)}\)

\(\sqrt{(x^2+2^2)}\) ( ∵  a2 - b2 = (a - b)(a + b))

\(\sqrt{x^2-4}\)

Therefore,

(fg)(x) = \(\sqrt{x^2-4}\)

856.

Let f(x) = 8x3 and g(x) = x1/3. Find g o f and f o g.

Answer»

To find: g o f and f o g

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f(x) = 8x3

(ii) g(x) = x1/3

We have,

g o f = g(f(x)) = g(8x3)

g o f\((8x^3)^{1/3}\) = 2x

f o g = f(g(x)) = f(x1/3)

f o g\(8(x^{1/3})^3\) = 8x

g o f = 2x and f o g = 8x

857.

Consider f : R+ → {4, ∞) given by f (x) = x2 + 4. Show that f is invertible with f –1 = \(\sqrt{y-4}\)  where R+ is the set of all non-negative real numbers.

Answer»

For the function f to be invertible, f has to be one-one onto. 

One-One 

Let x1, x2 ∈ R+ such that f (x1) = f (x2

⇒ x12 + 4 = x22 + 4 

⇒ x1 2 = x2 2 

⇒ (x1 – x2) (x1 + x2) = 0 

⇒ x1 – x2= 0 

⇒ x1 = x2 (∵  x1 + x2 ≠ 0 as x1, x2 ∈ R+

⇒ f is one-one

Onto 

Let y= f (x) = x2 + 4 ⇒ x2 = y – 4 

⇒ x = ±\(\sqrt{y-4}\) 

⇒ x = f –1(y) = \(\sqrt{y-4}\) 

⇒ f –1(x) = \(\sqrt{x-4}\) (∵ x ∈ R + so we ignore–ve value)

For every element y ∈ [4, ∞], there exists a pre image f –1(x) ∈ R +

So f is onto. 

Hence f being one-one onto is invertible.

858.

If f (x) = \(log\big(\frac{1-x}{1+x}\big)\) show that f (a) + f (b) = \(f\big(\frac{a+b}{1+ab}\big)\) .

Answer»

f(a) = \(log\big(\frac{1-a}{1+a}\big)\) , f(b) = \(log\big(\frac{1-b}{1+b}\big)\)

\(f\big(\frac{a+b}{1+ab}\big)\) = \(log\big(\frac{1- \frac{a+b}{1+ab}}{1+ \frac{a+b}{1+ab}}\big)\) 

⇒ \(f\big(\frac{a+b}{1+ab}\big)\) = \(log\big(\frac{\frac{1+ab-a-b}{1+ab}}{\frac{1+ab+a+b}{1+ab}}\big)\) 

\(log\big(\frac{(1-a)+b(a-1)}{(1+a)+b(a+1)}\big)\) = \(log\big(\frac{(1-a)(1-b)}{(1+a)(1+b)}\big)\) 

\(log\big(\frac{1-a}{1+a}\big)+log\big(\frac{1-b}{1+b}\big)\) (∵ log ab = log a + log b)

= f(a) + f(b).

859.

show that the function `f : R to R : f (x) =2x +3` is invertible and find `f^(-1)`

Answer» Correct Answer - `f^(-1) (y)= (1)/(2) (y-3)`
`f(x_(1)) =f(x_(2)) rArr 2x_(1) +3 =2x_(2)+3 rArr 2x_(1)=2x_(2) rArr x_(1)=x_(2)`
`:. ` f is one-one
If `y in R` then there exists `x=(y-3)/(2) in R` such that
`f(x)= f((y-3)/(2)) ={2.((y-3))/(2)+3}=y`
`:. ` f is onto.
`y =f(x) rArr y =2x+3`
`rArr x=(1)/(2) (y-3) rArr f^(-1) (y)=(1)/(2) (y-3)`
860.

Show that the function f: R → R: f(x) = 2x + 3 is invertible and find f -1.

Answer»

We know that

f(x1) = f(x2)

It can be written as

2x1 + 3 = 2x2 + 3

On further calculation

2x1 = 2x2

So we get

x1 = x2

Hence, f is one-one.

Consider y = 2x + 3

It can be written as

y – 3 = 2x

So we get

x = (y – 3)/ 2

If y ∈ R, there exists x = (y – 3)/ 2 ∈ R

f (x) = f ([y-3]/2) = 2([y – 3]/ 2) +3 = y

f is onto

Here, f is one-one onto and invertible.

Take y = f(x)

It can be written as

y = 2x + 3

So we get

x = (y-3)/ 2

So f -1 (y) = (y – 3)/ 2

Hence, we define f -1: R → R: f -1(y) = (y – 3)/ 2 for all y ∈ R

861.

If f(x) = \(\frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}\)  for x > 2, then f (11) equals(a) \(\frac{7}{6}\)(b) \(\frac{5}{6}\)(c) \(\frac{6}{7}\)(d) \(\frac{5}{7}\)

Answer»

Answer : (c) = \(\frac{6}{7}\)  

Given, f (x) = \(\frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}\)

⇒ f(11) = \(\frac{1}{\sqrt{11+2\sqrt{22-4}}} + \frac{1}{\sqrt{11-2\sqrt{22-4}}}\) 

\(\frac{1}{\sqrt{11+2\sqrt{18}}} + \frac{1}{\sqrt{11-2\sqrt{18}}}\) 

\(\frac{1}{\sqrt{11+6\sqrt{2}}} + \frac{1}{\sqrt{11-6\sqrt{2}}}\)

\(\frac{1}{\sqrt{(9+2\times 3\times \sqrt{2}+(\sqrt{2})^2)}} +\frac{1}{\sqrt{(9-2\times 3\times \sqrt{2}+(\sqrt{2})^2)}}\) 

\(\frac{1}{\sqrt{(3+\sqrt{2})^2}} + \frac{1}{\sqrt{(3-\sqrt{2})^2}}\) 

\(\frac{1}{{(3+\sqrt{2})}} +\frac{1}{{(3-\sqrt{2})}}\) 

\(\frac{3-\sqrt{2} +3+ \sqrt{2}}{(3+\sqrt{2})(3-\sqrt{2})}\)  = \(\frac{6}{9-2}\) 

\(\frac{6}{7}\)

862.

Let \(f:R→R:f(x)=\frac{1}{2}(3x+1)\). Show that f is invertible and find f-1.

Answer»

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f : A B is said to be a one-one function or injective mapping if different

elements of A have different images in B. Thus for x1, x2 ∈ A & f(x1), f(x2) ∈ B, f(x1) = f(x2) ↔ x1= x2 or x≠ x2 ↔ f(x1) ≠  f(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x2 Q and f(x) = \(\frac{(3x+1)}{2}\).So f(x1) = f(x2) → \(\frac{(3x_1+1)}{2}\)= \(\frac{(3x_2+1)}{2}\) → x1=x2

So f(x1) = f(x2) ↔ x1= x2, f(x) is one-one

Given co-domain of f(x) is R.

Let y = f(x) = \(\frac{(3x+1)}{2}\), So x = \(\frac{2y-1}{3}\)[Range of f(x) = Domain of y]

So Domain of y is R = Range of f(x)

Hence, Range of f(x) = co-domain of f(x) = R

So, f(x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is f-1(y) = \(\frac{2y-1}{3}\)

863.

If f(x) = \(\frac{x-|x|}{|x|}\) ,  then find f (–1).

Answer»

\(f(-1) = \frac{-1-|-1|}{|-1|}\) 

\(\frac{-1-1}{1}\) 

= - 2

864.

Let A = {2, 3, 4, 5} and B = {7, 9, 11, 13}, and let f = {(2, 7), (3, 9), (4, 11), (5, 13)}. Show that f is invertible and find f -1.

Answer»

We know that

f (2) = 7, f (3) = 9, f(4) = 11 and f (5) = 13

Here dom (f) = {2, 3, 4, 5} = A and range (f) = {7, 9, 11, 13} = B

So different element in A have different image.

f is one-one.

range (f) = B where f is onto

Hence, f is one-one onto and invertible.

We know that

f (2) = 7, f (3) = 9, f(4) = 11 and f (5) = 13

So we get

-1 (7) = 2, f -1 (9) = 3, f -1 (11) = 4, f -1 (13) = 5

Therefore, f -1 {(7, 2), (9, 3), (11, 4), (13, 5)}.

865.

Let `A ={2,3,4,5} " and " ={7,9,11,13}` and let f = {(2,7),(3,9) ,(4,11),(5,13)} Show that f is invertible and find `f^(-1)`

Answer» Correct Answer - `f^(-1) ={(7,2),(9,3),(11,4),(13,5)}`
Clearly f(2)= 7,f(3)=9 , f(4)= and f(5) =13
Thus different elements in A have different images in B.
So , f is one-one
Range (f )( ={(2,2) ,(9,3) ,(11,4),(13,5)}`
`f^(-1) ={(7,2),(9,3),(11,4),(13,5)}`
866.

Which one of the following is a bijective function on the set of real numbers?(a) 2x – 5 (b) | x | (c) x2 + 1 (d) x4 – x2 + 1

Answer»

Answer : (a) = 2x - 5 

Let f (x) = 2x – 5 f : R → R 

Then, for all x, y ∈ R, f (x) = f (y) 

⇒ 2x – 5 = 2y – 5 ⇒ x = y 

⇒ f is one-one 

Also, let z = f (x) = 2x – 5 

\(x= \frac{z+5}{2}\)

∴   For all z ∈ R, there exists an x ∈ R such that z = f (x) = 2x + 5 

⇒ f is onto

∴   f is one-one onto 

⇒ f is bijective. 

Now, check for other functions: Let g(x) = | x |, g : R → R

Then g(– 1) and g (1) = 1 

⇒ Both 1, and – 1 have the same image in R 

⇒ g is not one-one 

Similarly, for the functions x2 + 1 and x2 – x2 + 1; 

– 1 and 1 have the same image in R, 

so both the functions are not one-one, 

hence bijective.

867.

If f(x) = \(\frac{x}{x-1}\) , then \(\frac{f(a)}{f(a+1)} \) equals(a) \(f\big(\frac{1}{a}\big)\) (b) f (a)2 (c) f (– a) (d) f (0)

Answer»

Answer: (b) = f (a)

 Given, 

f(x) = \(\frac{x}{x-1}\) 

⇒ \(\frac{f(a)}{f(a+1)} = \frac{\frac{a}{a-1}}{\frac{a+1}{a+1-1}}\) 

\(\frac{a}{a-1} \times \frac{a}{a+1} = \frac{a^2}{a^2-1}\) 

\(f(a^2)\) .

868.

Let f : N → N be defined by\(\ f(n) = \begin{cases} \frac{n+1}{2} \,, & \quad \text {if } n \text { is odd} \\ \frac{n}{2} \,, & \quad \text{if }n \text{ is even} \end{cases}\)  for all n ∈ NFind whether the function is bijective or not. Give reasons.

Answer»

f (3) = \(\frac{3+1}{2} =2 \)  and  f(4) = \(\frac{4}{2}\) = 2

So, although 3 ≠ 4, f (3) = f (4) 

⇒ f is not one-one but many-one. 

For onto, consider any n ∈ N. 

When n is odd, then (2n – 1) is odd, so f (2n – 1) = \(\frac{2n-1+1}{2}\) = n

when n is even, then 2n is even, so f (2n) = \(\frac{2n}{2}\) = n

Thus for every n ∈ N, whether even or odd, there exists a pre-image n ∈ N, so the function f is onto. 

Hence the function f is many-one onto.

869.

A mapping f: R → R defined by f (x) = ex where x ∈ R is (a) one-one onto (b) one-one into (c) many-one into (d) many-one into

Answer»

Answer: (b) one - one into 

 For all x1, x2 ∈ R, 

f (x1) = f (x2

⇒ ex1 = ex2 ⇒ x1 = x2 

⇒ f is one-one. 

Let y = f (x) = ex 

⇒ x = log

Now x is not defined for y < 0 

∴  y ∈ R does not have a pre-image in R when y is negative. 

∴  f is into.

870.

Let f : R → R : f(x) = 10x + 7. Find the function g : R→ R : g o f = f o g = Ig.

Answer»

To find: the function g : R → R : g o f = f o g = Ig

Formula used: (i) g o f = g(f(x))

(ii) f o g = f(g(x))

Given: f : R → R : f(x) = 10x + 7

We have,

f(x) = 10x + 7

Let f(x) = y

⇒ y = 10x + 7

⇒ y – 7 = 10x

\(\Rightarrow x= \frac{y-7}{10}\)

Let \(g(y)=\frac{y-7}{10}\) where g: R → R

g o f = g(f(x)) = g(10x + 7)\(=\frac{(10x+7)-7}{10}\)

= x

= Ig

f o g = f(g(x)) =\(f(\frac{x-7}{10})\)

\(=10(\frac{x-7}{10})\)

\(=10(\frac{x-7}{10})+7\) 

= x – 7 + 7

= x

Clearly g o f = f o g = Ig

\(g(x)=\frac{x-7}{10}\)

871.

Prove that function f : R → R, f (x) = x2 + x is a many-one into function?

Answer»

Many-one 

Let a1, a2 be any two arbitrary elements of R, 

then f (a1) = f (a2) ⇒ a12 + a1 = a22 + a

⇒ a12 – a22 + a1 + a2 = 0 

⇒ (a1 – a2) (a1 + a2) + (a1 – a2) = 0 

⇒ (a1 – a2) (a1 + a2 + 1) = 0 

⇒ a1 – a2 = 0 or a1 + a2 + 1 = 0 

⇒ a1 = a2  or  a1 + a2 = – 1 ∈ R 

⇒ Both the inferences can be true. 

So, f (a1) = f (a2) does not necessarily imply a1 = a2 

⇒ f is many-one. 

Into 

Let y = x2 + x, then for all y ∈ R, there does not exist all x ∈ R, as for y = – 1, – 2, ..., etc. There is no pre-image in R. Hence f is an into function. 

⇒ f is many-one into function.

872.

Let `A = {1, 2, 3, 4}, B = {1, 5, 9, 11 , 15 , 16}`and`f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}`. Are the following true?(i) f is a relation from A to B(ii) f is a function from A to B.Justify y

Answer» Correct Answer - (i) Yes (ii) No
(i) Since `fsubXxxY`, so f is a relation from X to Y.
(ii) Dom (f)=X and range `(f)={1,5,9,11}subY`.
But, two different ordered pairs namley (2,9) and (2,11) have the same first coordinate. So f is not a function.
873.

Let A = {1, 2, 3), B = {4, 5, 6, 7) and let f = {(1, 4), (2,5), (3, 6)} be a function from A to B. State whether f is one-one.

Answer»

To state: Whether f is one-one

Given: f = {(1, 4), (2,5), (3, 6)}

Here the function is defined from A → B

For a function to be one-one if the images of distinct elements of A under f are distinct

i.e. 1,2 and 3 must have a distinct image.

From f = {(1, 4), (2, 5), (3, 6)} we can see that 1, 2 and 3 have distinct image.

Therefore f is one-one

f is one-one

874.

If A = R – {3} and B = R – {1} and f : A → B is a mapping defined by f (x) = \(\frac{x-2}{x-3}\) , Show that f is one-one onto.

Answer»

One-One 

Let x, y be any two elements of A, then 

f (x) = f (y) ⇒ \(\frac{x-2}{x-3} = \frac{y-2}{y-3}\) 

⇒ (x – 2) (y – 3) = (y – 2) (x – 3) 

⇒ xy – 2y – 3x + 6 = xy – 2x – 3y + 6 

⇒ – x = – y 

⇒ x = y 

⇒ f is one-one.

Onto 

Let y be an element of B. Then 

f (x) = y 

⇒ y = \(\frac{(x-2)}{(x-3)}\) 

⇒ (x – 3)y = (x – 2) ⇒ xy – 3y = x – 2 

⇒ xy – x = 3y – 2 ⇒ x (y – 1) = 3y – 2 

⇒ x = \(\frac{3y-2}{y-1}\)  

For y ≠ 1, x = \(\frac{3y-2}{y-1}\) is a real number.

Also, A = R – {3} ⇒ \(\frac{3y-2}{y-1}\) ≠ 3,  because if we take \(\frac{3y-2}{y-1}\) = 3, then 3y – 2 = 3y – 3) 

⇒ 2 = 3 which is not true. 

Hence, f is onto. 

⇒ f is both one-one and onto.

875.

What are the sum and difference of the identity function and the reciprocal function ?

Answer» Let `f:RtoR:f(x)=xandg:R-{0}toR:g(x)=(1)/(x)` be the identity function and the reciprocal function respectively.
Then, dom `(f)nn"dom "(g)=RnnR-{0}=R-{0}`.
`:.(f+g):R-{0}toR:(f+g)(x)=f(x)+g(x)=(x+(1)/(x))`.
Hence, `(f+g)(x)=(x+(1)/(x))"for all "x""inR-{0}`.
And, `(f-g):R-{0}toR:(f-g)(x)=f(x)-g(x)=(x-(1)/(x))`.
Hence, `(f-g)(x)=(x-(1)/(x))"for all "x""inR-{0}`.
876.

Find the quotient of the identity function by the reciprocal function.

Answer» Let `f:RtoR:f(x)andg:R-{0}toR:g(x)=(1)/(x)` be the identity function and the reciprocal function respectively.
Now, dom `((f)/(g))="dom "(f)nn"dom "(g)-{x:g(x)=0}`
and `{x:g(x)=0}={x:(1)/(x)=0}=phi`.
`:."dom "((f)/(g))=[RnnR-{0}]-phi=R-{0}`
So, `(f)/(g):R-{0}toR:((f)/(g))(x)=(f(x))/(g(x))=(x)/((1)/(x))=x^(2)`.
Hence, `((f)/(g))(x)=x^(2)"for all "x""inR-{0}`.
877.

Find the quotient of the identity function by the modulus function.

Answer» Let `f:RtoR:f(x)=xandg:RtoR:g(x)=|x|` be the identity function and the modulus function respectively.
Now, dom `((f)/(g))="dom "(f)nn"dom "(g)-{x:g(x)=0}`
and `{x:g(x)=0}={x:""|x|=0}={0}`.
`:."dom "((f)/(g))=[RnnR-{0}]-{0}=R-{0}`
So, `(f)/(g):R-{0}toR:((f)/(g))(x)=(f(x))/(g(x))=(x)/(|x|)={{:(1",when "xgt0),(-1",when "xlt0):}`
Hence, `((f)/(g))(x)={{:(1",when "xgt0),(-1",when "xlt0):}`.
878.

Find the domain of the following functions. f(x) = x!

Answer»

f(x) = x! 

∴ Domain of f = set of whole numbers (W)

879.

Find whether the following functions are one-one or many-one?(i) f: R – {3} → R defined by f (x) = \(\frac{5x+7}{x-3}\) ,  x ∈ R − {3} (ii) Modulus function f : R → R defined by f (x) = \(\ f(n) =\begin{cases}x \,; &amp; \quad x \geq 0\\-x \,; &amp; \quad x &lt;0\end{cases}\)(iii) Greatest integer function f : R → R defined by f (x) = [x] = n (an integer) for all n ≤ x ≤ n + 1.

Answer»

Given:

f (x) = \(\frac{5x+7}{x-3}\) , x ∈ R - {3}

Let a1, a2 be two arbitrary elements ∈R – {3} such that f (a1) = f (a2).

Then, f (a1) = f(a2) ⇒ \(\frac{5a_1+7}{a_1-3} = \frac{5a_2+7}{a_2-3}\)  

⇒ 5a1a2 + 7a2 – 15a1 – 21 = 5a2a1 – 21 + 7a1 – 15a2 

⇒ – 22a1 = – 22a

⇒ a1 = a2 

⇒ f is one-one.

(ii) Given: f (x) = | x | 

⇒ f (1) = | 1 | = 1 and f (– 1) = |– 1| = 1 

Thus, f (1)= f (– 1) = 1 but 1 ≠ – 1 

∴  f is many-one. 

(iii) ∵ f (x) = [x] = n for all n ≤ x < n + 1, so, 1 ≤ x < 2 ⇒ f (x) = 1 

∴ The elements 1.1, 1.25, 1.4, 1.9 .... ∈ domain are mapped onto to the same value 1 in the range. 

Hence the function f is many-one.

880.

Explain Equal and Identity functions?

Answer»

Two functions f and g are said to be equal if and only if 

(i) domain of f = domain of g 

(ii) co-domain of f = co-domain of g 

(iii) f (x) = g(x) for every x belonging to their common domain. 

Ex. Let A = {1, 2} and B = {3, 6}. 

Then f : A → B given by f (x) = x2 + 2 and g : A → B given by g(x) = 3x are equal as: 

• f (1) = 3 = g(1), f (2) = 6 = g(2) 

• Both f and g have the same domain and co-domain. 

Identity Function: 

The identity function maps each member of the domain onto itself, i.e., if I is the identity function I: R → R then for all x ∈ R, 

I(x) = x.

881.

Find the domain of the following functions.f(x) = 5-xPx-1

Answer»

f(x) = 5-xPx-1

5 – x > 0, x – 1 ≥ 0, x – 1 ≤ 5 – x 

∴ x < 5, x ≥ 1 and 2x ≤ 6 

∴ x ≤ 3 

∴ Domain of f = {1, 2, 3}

882.

Explain Algebraic functions?

Answer»

Functions can be broadly categorized into two groups. 

(a) Algebraic Functions 

(b) Transcendental Functions 

 Algebraic Functions: 

A function that consists of a finite number of terms involving powers and roots of the independent variable x and the four fundamental operations of addition, subtraction, multiplication, and division is called an algebraic function.

e.g. 

5x3 – 7x2 + 6, \(4\sqrt{7x-12}\) , \(2x^\frac{1}{2} \) +4x-7 , \(\frac{2x+1}{2x+3}\), etc.

The particular cases of algebraic functions are:

(i) Polynomial Functions: A function f (x) = a0 + a1x + a2x2 + ..... + anxn, where n ∈ N and a1, a2, a3, ..... , an ∈ R is called a polynomial function. 

Its 

Domain is the set of real numbers 

Range is the set of real numbers.

(ii) Rational Function:  A function f : A → R, f (x) = \(\frac{P(x)}{Q(x)}\) , where Q(x) ≠ 0 is called a rational function. Here A = {x : x ∈ R} such that Q(x) ≠ 0}, and P(x) and Q(x) are polynomial functions of x. 

Ex. 

(i) \(\frac{x^2+5x+6}{x^2-3x+2}\) is a polynomial function with domain = R – {1, 2}

(\(\because\) The roots of x2 – 3x + 2 are x = 1, x = 2)

(ii) f (x) = \(\frac{1}{x}\) : Domain = R – {0}, Range = R – {0}

(iii) f (x) = \(\frac{1}{x^2}\) : Domain = R – {0}, Range = Set of positive real numbers.

(iv) f (x) = \(\frac{1}{x^3}\) : Domain = R – {0}, Range = R – {0}.

(iii) Irrational Functions: 

Functions as \(\sqrt{3x^2-7x+4}\) , \(4x^2+\sqrt{3x}\) , \(\frac{1}{\sqrt[3]{5+3x}}\)

 i.e., involving radicals or non-integral powers of x are called irrational functions.

883.

Explain Algebraic Operations on Functions ?

Answer»

If f and g are real valued functions of x with domain set A and B respectively, then both f and g are defined in A ∩ B. Then,

(a) (f + g) x = f (x) + g(x) : Domain A ∩ B 

(b) (f – g) x = f (x) – g(x) : Domain A ∩ B 

(c) (fg) x = f (x) . g(x) : Domain A ∩ B

(d) \(\big[\frac{f}{g}\big]x = \frac{f(x)}{g(x)}\) : Domain A ∩ B 

(e) (f + k) x = f (x) + k : k is constant, so domain = A 

(f) (kf ) x = k f (x) 

(g) f n(x) = [f (x)]n

884.

Explain Transcendental functions?

Answer»

Transcendental Functions: A function that is not algebraic is called transcendental.

(i) Trigonometric functions as sin x, cos x, tan 3x, cosec 2x, etc. 

(ii) Inverse Trigonometric functions as sin–1 x, tan–1 2x, etc 

(iii) Exponential functions as y = a

(iv) Logarithmic functions as the correspondence x → log x.

885.

Explain Scope of Variables.

Answer»

All variables in a program may not be accessible at all locations in that program. This depends on where you have declared a variable. The scope of a variable determines the portion of the program where you can access a particular identifier. There are two basic scopes of variables in Python :

(1) Global variables

 (2) Local variables

886.

Explain anonymous functions.

Answer»

You can use the lambda keyword to create small anonymous functions. These functions are called anonymous because they are not declared in the standard manner by using the def keyword, lambda functions have their own local namespace and cannot access variables other than those in their parameter list and those in the global namespace.

887.

Mark (√) against the correct answer in the following: f : N → N : f(x) = 2x is A. one - one and onto B. one - one and into C. many - one and onto D. many - one and into

Answer»

Correct Answer is (B) one - one and into

f(x) = 2x

For One - One

f(x1) = 2x1

f(x2) = 2x2

put f(x1) = f(x2) we get

2x1 = 2x2

Hence, if f(x1) = f(x2), x1 = x2

Function f is one - one

For Onto

f(x) = 2x

let f(x) = y, such that y∈N

2x = y

\(\Rightarrow x=\frac{y}{2}\)

If y = 1

\(x=\frac{1}{2}=0.5\)

which is not possible as x∈N

Hence, f is not onto., f is into

Hence, option b is correct

888.

Let A = R – {3} and B = R – {1}. Then \(f:A →A :f(x)=\frac{(x-2)}{(x-3)}\) isA. one - one and into B. one - one and onto C. many - one and into D. many - one and onto

Answer»

\(f:A →A :f(x)=\frac{(x-2)}{(x-3)}\)

In this function

x = 3 and y = 1 are the asymptotes of this curve and these are not included in the functions of the domain and range respectively 

therefore the function f(x) is one one sice there are no different values of x which has same value of y .

and the function has no value at y = 1 here range = codomain

∴ f(x) is onto

889.

Let `A ={1,2,3 } " and let " f: A to A ` defined by `f ={(1,2),(2,3) , (3,1)}` Find `f^(-1)` if it exists .

Answer» We have `f(1)=2 , f(2) =3 " and " f(3) =1`
Don `(f ) ={1,2,3} = A and range " ( f) ={1,2,3}=A`
Clearly different elements in A have different images .
`:.` f is one -one .
Range (f ) `=A rArr f ` is onto.
Thus f is one-one onto and therefore invertible .
Now `f(1) =2 , f(2) =3 " and " f(3) =1`
`rArr f^(-1) (2)=1 , f^(-1) (3) =2 " and " f^(-1) (1) =3`
Hence `f^(-1) ={(2,1) , (3,2) ,(1,3)}`
890.

Mark (√) against the correct answer in the following: f : R + → R+ : f(x) = ex is A. many - one and into B. many - one and onto C. one - one and into D. one - one and onto

Answer»

Correct Answer is (D) one - one and onto

f(x) = ex

Since the function f(x) is monotonically increasing from the domain R+ → R+

∴f(x) is one –one

Range of f(x) = (1,∞) = R+ (codomain)

∴f(x) is onto

∴ f : R+ → R+ : f(x) = ex is one - one onto.

891.

Let ` f : NN to NN : f(x) =2 x` for all `x in NN` then `f` isA. one-one and ontoB. one - one and ontoC. many -one and ontoD. many -one and into

Answer» Correct Answer - B
`2X=3 rArr x = (3)/(2) !in N . ` so f is into
892.

Mark (√) against the correct answer in the following:\(f:[\frac{-\pi}{2},\frac{\pi}{2}]\)→ [-1, 1] : f(x) = sin x isA. one - one and into B. one - one and onto C. many - one and into D. many - one and onto

Answer»

Correct Answer is (B)  one - one and onto

\(f:[\frac{-\pi}{2},\frac{\pi}{2}]\)→ [-1, 1] : f(x) = sin x

Here in this range, the function is NOT repeating its value,

Therefore it is one - one.

Range = Codomain

∴Function is onto

Hence, option B is the correct choice.

893.

`f : N to N : f (x) =x^(2) + x+ 1 ` isA. one-one and ontoB. one - one and intoC. many -one and ontoD. many -one and into

Answer» Correct Answer - B
`f(x_(1)) =f(x_(2)) rArr x_(1)^(2) +x_(1) +1=x_(2)^(2) +x_(2)+1`
`rArr (x_(1)^(2)-x_(2)^(2)) +(x_(1)-x_(2))=0rArr (x_(1)_x_(2))(x_(1) +x_(2)+1)=0`
`rArr x_(1)-x_(2) =0rArr x_(1)=x_(2)`.
`:. ` f is one-one
`f(x) =1 rArr x^(2) +x+1 =1 rArr x(x +1) =0 rArr x=0 " or " x=-1`
And none of 0 and -1 is in gt So f in into .
894.

`f : R^(+) to R^(+) : f(x) = e^(x) ` isA. many-one and intoB. many -one and ontoC. one-one and intoD. one-one and onto

Answer» Correct Answer - D
`f(x_(1)) =f(x_(2)) rArr e^(x_(1)) =e^(x_(2)) rArr x_(1) =x_(2)` . So f is one-one
For each `x in R^(+) EE " log " x in R^(+) s.t f(log x )=x`
`So , f in onto.
895.

Let f: R → R: f(x) = (2x + 1) and g: R → R: g(x) = (x2 – 2).Write down the formulae for(i) (g o f) (ii) (f o g) (iii) (f o f) (iv) (g o g).

Answer»

It is given that

f(x) = (2x + 1) and g(x) = (x2 – 2)

(i) g o f = g o f (x) = g{f(x)} = g {2x + 1}

So we get

= (2x + 1)2 – 2

It can be written as

= 4x2 + 4x + 1 – 2

On further calculation

= 4x2 + 4x – 1

(ii) f o g = f o g (x) = f {g(x)} = f{x2 – 2}

So we get

= 2 {x2 – 2} + 1

It can be written as

= 2x2 – 4 + 1

On further calculation

= (2x2 – 3)

(iii) f o f = f o f (x) = f{f(x)} = f(2x + 1)

So we get

= 2 (2x + 1) + 1

It can be written as

= 4x + 2 + 1

On further calculation

= 4x + 3

(iv) g o g = g o g (x) = g{g(x)} = g { x2 – 2}

So we get

= (x2 – 2)2 – 2

On further calculation

= x4 – 4x2 + 4 – 2

We get

= x4 – 4x2 + 2

896.

`f : R to R : f (x) = cos x ` isA. one-one and intoB. one-one and ontoC. many- one and intoD. many-one and onto

Answer» Correct Answer - C
cos `(2pi-theta) = cos theta rArr f ` is many one
Range `(f) = [1,1] sub R rArr f` is into.
897.

State true or false: The fraction 14 2/5 is equal to 14.2

Answer»

False

14 2/10 = 14.2

898.

Show that the function f: R → R: f(x) = x4 is many-one and into.

Answer»

We know that for every negative and positive value of x we get the same value of f(x) which is not one-one that is many one.

x4 ≥ 0 for all values of f(x)

Thus, range [0, ∞) ⊂ R

Here, the function is into function.

899.

Mark (√) against the correct answer in the following:If \(f(x+\frac{1}{x})=x^2\frac{1}{x^2}\) then f(x) = ?A. x2B. (x2 – 1)C. (x2 – 2)D. None of these

Answer»

Correct Answer is (C) (x2 – 2)

\(f(x+\frac{1}{x})=x^2\frac{1}{x^2}\)\(=(x+\frac{1}{x})^2-2\)

\(\Rightarrow f(x)=x^2-2\)

900.

`f : C to R : f (z) =|z|` isA. one-one and intoB. one -one and ontoC. many -one and intoD. many -one and onto

Answer» Correct Answer - C
`I ne -i`. But f(i) `=f(-i) =1. `so f is many -one
`-1 in R` having no pre-image in C. So f is into.