InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
`sqrt(7569)+sqrt(?)=104`A. 256B. 400C. 361D. 289 |
|
Answer» Correct Answer - D `sqrt(?)=104-sqrt(7569) ` `sqrt(?)=104-87` `?=17^(2)=289` |
|
| 202. |
What will come in the place of the question mark ‘?’ in the following question?(7/2) + 6 × (1/3) ÷ 4 = ?1. 62. 83. 44. 25. 12 |
|
Answer» Correct Answer - Option 3 : 4 The given equation is: (7/2) + 6 × (1/3) ÷ 4 = ? (7/2) + 6 × (1/3) × (1/4) = ? (7/2) + 6 × (1/12) = ? (7/2) + (1/2) = ? ? = (7/2) + (1/2) ? = 4 ∴ The required value of "?" in the given equation is 4 |
|
| 203. |
What is the square root of (14 + 6√5) ?1. 3 + √52. 3 + 2√53. 5 + √34. 2 + √5 |
|
Answer» Correct Answer - Option 1 : 3 + √5 Given: (14 + 6√5) Concept: (a + b)2 = a2 + b2 + 2ab Calculation: First we convert given equation into given concept form ⇒ 14 + 6√5 = 14 + (2 × 3 × √5) ⇒ 14 + 6√5 = 9 + 5 + (2 × 3 × √5) ⇒ 14 + 6√5 = (3)2 + (√5)2 + (2 × 3 × √5) Now the given equation become in the form of given concept so, ⇒ a = 3, b = √5 ⇒ (3)2 + (√5)2 + (2 × 3 × √5) = (3 + √5)2 ⇒ 14 + 6√5 = (3 + √5)2 Now square root of (14 + 6√5) is ⇒ √(14 + 6√5) = √(3 + √5)2 ⇒ √(14 + 6√5) = 3 + √5 ∴ √(14 + 6√5) is 3 + √5 |
|
| 204. |
A train starts full of passengers at the first station it drops 1/3 of the passengers and takes 280 more at the second station it drops one half the new total and takes twelve more on arriving at the third station it is found to have 248 passengers. Find the no of passengers in the beginning? |
|
Answer» Let no of passengers in the beginning be x After first station no passengers=(x-x/3)+280=2x/3 +280 After second station no passengers =1/2(2x/3+280)+12 1/2(2x/3+280)+12=248 2x/3+280=2*236 2x/3=192 x=288 |
|
| 205. |
If a2 +b2 =177 and ab=54 then find the value of a+b/a-b? |
|
Answer» (a+b)2 =a2 +b2 +2ab=117+2*24=225 a+b=15 (a-b)2 =a2 +b2 -2ab=117-2*54 a-b=3 a+b/a-b=15/3=5 |
|
| 206. |
If (26)2 is subtracted from square of a number, the answer so obtained is 549. What is the number? (a) 35 (b) 33 (c) 29 (d) 41 (e) None of these |
|
Answer» (a) Let the the number be = x |
|
| 207. |
Kiran had 85 currency notes in all , some of which were of Rs.100 denaomination and the remaining of Rs.50 denomination the total amount of all these currency note was Rs.5000.how much amount did she have in the denomination of Rs.50? |
|
Answer» Let the no of fifty rupee notes be x Then,no of 100 rupee notes =(85-x) 50x+100(85-x)=5000 x+2(85-x)=100 x=70 so,,required amount=Rs.(50*70)= Rs.3500 |
|
| 208. |
`x% "of" 275+sqrt(625)=450div3+40`A. 54B. 60C. 45D. 58 |
|
Answer» Correct Answer - B `x xx2.75+25=150+40` `2.75x=165` `x=60` |
|
| 209. |
Find the value of x.x% of 50 = 401. 102. 203. 404. 80 |
|
Answer» Correct Answer - Option 4 : 80 Given: x% of 50 = 40 Calculations: x% of 50 = 40 ⇒ (x/100) × 50 = 40 ⇒ x/2 = 40 ⇒ x = 80 ∴ The value of x is 80. |
|
| 210. |
If \(3\frac{1}{2} + 4\frac{1}{4} + 6\frac{1}{6}+x = 60 / 2\), then what will be the value of x?1. 143/122. 163/123. 193/124. 166/12 |
|
Answer» Correct Answer - Option 3 : 193/12 Calculation: \(3\frac{1}{2} + 4\frac{1}{4} + 6\frac{1}{6}+x = 60 / 2\) ⇒ 7/2 + 17/4 + 37/6 + x = 60/2 ⇒ x = 60/2 – 7/2 – 17/4 – 37/6 = (360 – 42 – 51 – 74)/12 ⇒ x = 193/12 ∴ The value of x is 193/12 |
|
| 211. |
Find the value of x, if \(21^{^\sqrt x} + 20^{^\sqrt x} = 29^{^\sqrt x}\)1. 22. 33. 04. 4 |
|
Answer» Correct Answer - Option 4 : 4 Given: 21√x + 20√x = 29√x Formula used: Using phythagorus theorem a2 + b2 = c2 Calculation: 21√x + 20√x = 29√x Compare the whole equation a2 + b2 = c2 So √x = 2 x = 4 212 + 202 = 292 441 + 400 = 841 841 = 841 So x = 4 satisfy this equation ∴ The value of x is 4. |
|
| 212. |
`(3)/(7)xx(9)/(14) div (5)/(7)=?`A. `(27)/(70)`B. `(13)/(35)`C. `(17)/(70)`D. `(12)/(35)` |
|
Answer» Correct Answer - A `(3)/(7)xx(9)/(14)xx(7)/(5)=(3xx9)/(14xx5)=(27)/(70)` |
|
| 213. |
17% of 250+ ? = 108A. 65.5B. 73.5C. 56.5D. 68.5 |
|
Answer» Correct Answer - A `(17)/(100)xx250+?=17xx2.5+?=108` or, `?=108-42.5=65.5` |
|
| 214. |
12.8 % of 715=?A. 91.25B. 92.15C. 95.12D. None of these |
|
Answer» Correct Answer - D `12.8% ` of `715=12.8xx(715)/(100)= (9152)/(100)=91.52` |
|
| 215. |
`45 div 1.5 - 0.5 = ?`A. 22.5B. 25.5C. 29.5D. 45 |
|
Answer» Correct Answer - C `45 div 1.5-0.5=30-0.5=29.5` |
|
| 216. |
The numerator of a fraction is 6 less than its denominator. If the numerator is decreased by 1 and the denominator is increased by 5, then the denominator becomes 4 times the numerator. Find the fraction.1. 4/112. 3/113. 5/114. 7/11 |
|
Answer» Correct Answer - Option 3 : 5/11 Given: The numerator of the fraction is 6 less than its denominator. If the numerator is decreased by 1 and the denominator is increased by 5, then the denominator becomes 4 times the numerator. Calculations: Let the numerator of the fraction be 'x'. According to question, Denominator = x + 6 Now, ⇒ 4 × (x - 1) = (x + 6) + 5 ⇒ 4x - 4 = x + 11 ⇒ x = 5 ⇒ Numerator of the fraction = 5 ⇒ Denominator of the fraction = x + 6 ⇒ 5 + 6 ⇒ 11 ∴ The fraction is 5/11. Topper's approach: Given: The numerator of the fraction is 6 less than its denominator. If the numerator is decreased by 1 and the denominator is increased by 5, then the denominator becomes 4 times the numerator. Concept used: Directly satisfy the conditions given in the question through options. Explanation: Only option 3 is there which satisfied the first condition that the numerator is 6 less than the denominator. ∴ The fraction is 5/11. |
|
| 217. |
What will be the value of x in the given equation?\(\frac{1}{{{3^3}}} \times \frac{2}{{{3^3}}} \times {\left( {2\frac{1}{4}} \right)^2} = \frac{x}{{18}}\)1. 1/42. 1/23. 1/84. 45. 8 |
|
Answer» Correct Answer - Option 1 : 1/4 Given- \(\frac{1}{{{3^3}}} × \frac{2}{{{3^3}}} × {\left( {2\frac{1}{4}} \right)^2} = \frac{x}{{18}}\) Calculation- 1/27 × 2/27 × (9/4)2 = x/18 ⇒ x/18 = 81/16 × 1/27 × 2/27 ⇒ x/18 = 1/72 ∴ x = 1/4 |
|
| 218. |
If 144 – a2 = (3)2, .find the value of a.1. √1232. √1353. √1454. √156 |
|
Answer» Correct Answer - Option 2 : √135 Calculation: 144 – 9 = a2 ⇒ 135 = a2 ⇒ √135 = a ∴ The value of a is √135 |
|
| 219. |
`(3)/(4) xx" 26% "of " 850=?`A. 165.75B. 160.35C. 163.75D. 167.75 |
|
Answer» Correct Answer - A `?=850xx(26)/(100)xx(3)/(4)=165.75` |
|
| 220. |
Select the most suitable option to solve the given equation.\(\frac 5 {13} + \frac {13} 5\)1. \(\frac {18}{65}\)2. \(\frac {65}{18}\)3. \(\frac {18}{18}\)4. \(2\frac {64}{65}\) |
|
Answer» Correct Answer - Option 4 : \(2\frac {64}{65}\) Given: \(\frac 5 {13} + \frac {13} 5\) Calculation: \(\frac 5 {13} + \frac {13} 5\) ⇒ (5/13) + (13/5) ⇒ (25 + 169)/65 ⇒ 194/65 ⇒ \(2\frac {64}{65}\) ∴ The value is \(2\frac {64}{65}\). |
|
| 221. |
Select the appropriate combination of symbols that will be placed sequentially in place of the question mark (?) In the given equation, which will complete the equation correctly.[(100 ? 2) ? 2] ? 10 = 591. –, ÷, + 2. –, ×, ÷ 3. +, ×, × 4. +, ÷, ÷ |
|
Answer» Correct Answer - Option 1 : –, ÷, + Calculation: [(100 ? 2) ? 2] ? 10 = 59 Checking options Option 1 [(100 – 2) ÷ 2] + 10 = (98/2) + 10 = 59 Option 2 [(100 – 2) × 2] ÷ 10 = 19.6 Option 3 [(100 + 2) × 2] × 10 = 2040 Option 4 [(100 + 2) ÷ 2] ÷ 10 = 5.1 ∴ Option 1 is correct |
|
| 222. |
If a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + 2014} \), then the value of a is1. 10022. 10073. 20134. 2014 |
|
Answer» Correct Answer - Option 4 : 2014 Concept: (a + b)2 = a2 + b2 + 2ab Given: a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + 2014} \) Calculation: After rearranging the given question, a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + {(2013~+~1)}} \) a = \(\sqrt {{{\left( {2013} \right)}^2} + 2 \times 2013 + 1} \) a = \(\sqrt {{{\left( {2013} \right)}^2} +~1^2~+~ 2 \times 1 \times 2013} \) a = \(\sqrt {{{\left( {2013~+~1} \right)}^2}} \) a = 2014 |
|
| 223. |
85333 –11638 – 60994 = ? (a) 12701 (b) 12600 (c) 12800 (d) 12500 (e) None of these |
|
Answer» (a) ? = 85333 – 11638 – 60994 ? = 85333 – 72632 ? = 12701 |
|
| 224. |
`8059-7263=?xx40`A. 19.9B. 18.7C. 15.9D. 17.7 |
|
Answer» Correct Answer - A `?xx40=8059-7263=796` `:. ?=(796)/(40)=19.9` |
|
| 225. |
`(5xx5xx5xx5xx5xx5)^(4)xx(5xx5)^(6)div(5)^(2)=(25)^(?)`A. 10B. 17C. 19D. 12 |
|
Answer» Correct Answer - B `(25)^(?)=(5xx5xx5xx5xx5xx5)^(4)xx(5xx5)^(6) div(5)^(2)` `=(25xx25xx25)^(4) xx(25)^(6)div (25)^(1)` `=(25^(3))^(4)xx(25)^(6) div 25^(1)=(25)^(12)xx (25)^(6) div (25)^(1)` `=(25)^(12+6-1)=(25)^(17)` `:. ?=17` |
|
| 226. |
Solve it. \(5\frac{3}{4}+?+2\frac{1}{2}=10\frac{1}{8}\)1. \(1\frac{7}{8}\)2. \(2\frac{7}{8}\)3. \(2\frac{1}{4}\)4. \(1\frac{7}{6}\) |
|
Answer» Correct Answer - Option 1 : \(1\frac{7}{8}\) Calculation : Let the value at question mark be x ⇒ (23/4) + x + (5/2) = (81/8) ⇒ x = (81/8) - (5/2) - (23/4) ⇒ x = (81 - 20 - 46)/ 8 ⇒ x = 15/8 \( \Rightarrow x\; = \;1\frac{7}{8}\) ∴ the required value of x is \(1\frac{7}{8}\) |
|
| 227. |
62478078 के वर्ग मूल में कितने अंक है?A. 4B. 5C. 6D. 3 |
|
Answer» Correct Answer - A Number of digits in `62478078=8` `:.` Number of digits in its square root `=4` |
|
| 228. |
Simplified value of `(sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))`A. 3B. 2C. 6D. 4 |
|
Answer» Correct Answer - B `(sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))=(sqrt(4xx4xx2)+sqrt(4xx4xx3))/(sqrt(2xx2xx2)+sqrt(2xx2xx3))` `=(4sqrt(2)+4sqrt(3))/(2sqrt(2)+2sqrt(3))=(4(sqrt(2)+sqrt(3)))/(2(sqrt(2)+sqrt(3)))` `=4/2=2` |
|
| 229. |
If \(\frac{1}{{x + \frac{1}{{y + \frac{2}{{z + \frac{1}{4}}}}}}} = \frac{{29}}{{79}}\) where x, y, and z are natural numbers, then the value of (2x + 3y - z) is:1. 42. 03. 24. 1 |
|
Answer» Correct Answer - Option 3 : 2 Given: \(\frac{1}{{x + \frac{1}{{y + \frac{2}{{z + \frac{1}{4}}}}}}} = \frac{{29}}{{79}}\) Calculation: RHS can be written as: \(⇒ \;\frac{1}{{\frac{{79}}{{29}}}} = \frac{{29}}{{79}}\) \( ⇒ \;\frac{1}{{2\; +\ \frac{{21}}{{29}}\;}} = \frac{{29}}{{79}}\) \(⇒ \;\frac{1}{{2\; +\ \frac{1}{{\frac{{21}}{{29}}}}\;}} = \frac{{29}}{{79}}\) \(⇒ \;\frac{1}{{2\; +\ \frac{1}{{1 \ +\ \frac{8}{{21}}}}\;}} = \frac{{29}}{{79}}\) \(⇒ \;\frac{1}{{2\; +\ \frac{1}{{1\ +\ \frac{2}{{\frac{{21}}{4}}}}}\;}} = \frac{{29}}{{79}}\) \(⇒ \;\frac{1}{{2\; +\ \frac{1}{{1\ +\ \frac{2}{{5\ +\ \frac{1}{4}}}}}\;}} = \frac{{29}}{{79}}\) After comparing LHS with the question, x = 2, y = 1, z = 5 Substituting the value of x, y and z in (2x + 3y - z), ⇒ 2(2) + 3(1) - 5 ⇒ 4 + 3 - 5 ⇒ 2 ∴ The value of (2x + 3y - z) is 2. |
|
| 230. |
`47^(7.5)div47^(3//2)xx47^(-3)=(sqrt(47))^(?)`A. 3B. `2(1)/(2)`C. 6D. 3.5 |
|
Answer» Correct Answer - C `(47)^(3)=[(47)^(1//2)]^(6)=(sqrt(47))^(?)` `:. ?=6` |
|
| 231. |
`3sqrt(sqrt(0.000064))=?`A. 0.02B. 0.2C. 2D. 0.9 |
|
Answer» Correct Answer - B `3sqrt(sqrt(0.000064))=3sqrt(0.008)=((0.2^(3)))^(1//3)=0.2` |
|
| 232. |
Simplify3 + 6 of 3 – 2 × 5{25 ÷ (6 – 1)}1. -292. -243. 324. -26 |
|
Answer» Correct Answer - Option 1 : -29 Concept: Use BODMAS rule Explanation 3 + 6 of 3 – 2 × 5{25 ÷ 5} ⇒ 3 + 6 of 3 – 2 × 5{5} ⇒ 3 + 6 of 3 – 50 ⇒ 3 + 6 × 3 – 50 ⇒ 3 + 18 – 50 ⇒ 21 – 50 ⇒ -29 |
|
| 233. |
`(333.33+33.33+3333.34)div50=?`A. 74B. 78C. 82D. 84 |
|
Answer» Correct Answer - A `(333.33+33.33+3333.34) div 50=3700div50=74` |
|
| 234. |
The value of \(\frac{[(1.3)^2+(1.3\times1.5)+(1.5)^2]\times[(1.3)^2-1.95+(1.5)^2]}{(1.3)^4+(1.3)^2(2.25)+(1.5)^4}\) is: |
|
Answer» Correct Answer - Option 3 : 1 Given: \(\frac{[(1.3)^2+(1.3\times1.5)+(1.5)^2]\times[(1.3)^2-1.95+(1.5)^2]}{(1.3)^4+(1.3)^2(2.25)+(1.5)^4}\) Concept used: The numerator of the given expression is of the form = (a2 + ab + b2) × (a2 – ab + b2) Expanding and solving we get: (a2 + ab + b2) × (a2 – ab + b2) = a4 – a3b + a2b2 + a3b – a2b2 + ab3 + a2b2 – ab3 + b4 ⇒ (a2 + ab + b2) × (a2 – ab + b2) = a4 + a2b2 + b4 Denominator is of the form = a4 + a2b2 + b4 Calculation: Numerator: [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – 1.95 + (1.5)2] = [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – (1.3 × 1.5) + (1.5)2] ⇒ [(1.3)2 + (1.3 × 1.5) + (1.5)2] × [(1.3)2 – (1.3 × 1.5) + (1.5)2] = (1.3)4 + (1.3)2 × (1.5)2 + (1.5)4 Denominator: (1.3)4 + (1.3)2 (2.25) + (1.5)4 = (1.3)4 + (1.3)2 × (1.5)2 + (1.5)4 Now, Numerator/Denominator = [(1.3)4 + (1.3)2 × (1.5)2 + (1.5)4]/ [(1.3)4 + (1.3)2 × (1.5)2 + (1.5)4] ⇒ Numerator/Denominator = 1 ∴ The value of the given expression is 1. |
|
| 235. |
सरल करें: `(5/3xx7/51 "of" 17/4-1/3)/(2/9xx5/7 "of" 28/5-2/3)`A. `1/2`B. `4`C. `2`D. `1/4` |
|
Answer» Correct Answer - C According to the question `(5/3 xx 7/51` of `17/5-1/3)/(2/9xx5/7 "of" 28/5-2/3)` `implies (5/3xx7/51xx17/5-1/3)(2/9xx5/7xx28/5-2/3)` `implies(5/3xx7/15-1/3)/(2/9xx4-2/3)` `implies(7/9-1/3)/(8/9-2/3)implies((7-3)/9)((8-6)/9)` `implies 4/2=2` |
|
| 236. |
सरल करें: `(-(4-6)^(2)-3(-2)+|-6|)/(18-9-:3xx5)`A. `3/8`B. `4/7`C. `8/3`D. `7/4` |
|
Answer» Correct Answer - C According to the question `(-(4-6)^(3)-3(-2)+|-6|)/(18-9-:3xx5)` `implies(-(-2)^(2)+6+6)/(18-3xx5)` `implies (-4+6+6)/(18-15)implies8/3` |
|
| 237. |
`5-[4-{3-(3-3-6)}]` के बराबर है।A. 10B. 6C. 4D. 0 |
|
Answer» Correct Answer - A According to the question `5-[4-(-3-{3-3-6})]` `implies5-[4-(-3-{-6})]` `implies5-[4-(3+6)]` `implies5-[4-9]` `implies5-[-5]` `implies 5+5=10` |
|
| 238. |
सरल करें: `(9|3-5|-5|4|-:10)` `-3(5)-2xx4-:2)`A. `9/10`B. `-8/17`C. `-16/19`D. `4/7` |
|
Answer» Correct Answer - C According to the question `(9|3-5|-5|4|-:10)/(-3(5)-2xx4-:2)` `implies(9xx2-20-:)/(-15-2xx2)` `implies (18-2)/(-15-4)` `implies(-16)/19` |
|
| 239. |
सरल करें: `1+3/(1+3/(1+4/5))`A. `7/4`B. `4/7`C. `7/5`D. `3/7` |
|
Answer» Correct Answer - A Acording to the question `1+2/(1+3/(1+4/5))` `implies1+2/(1+(3xx5)/5+4)` `implies 1+2/(1+15/9)` `implies 1+18/(9+15)` `implies (24+18)/24implies42/24` `7/24` |
|
| 240. |
सरल करें: `1+1/(1+2/(2+3/(1+4/5)))`A. `1 11/5`B. `1 5/7`C. `1 6/17`D. `1 21/17` |
|
Answer» Correct Answer - A According to the question `1+1/(1+2/(2+3/(1+4/5)))` `implies1+1/(1+2/(2+3/((5+4)/5)))` `implies11+1/(1+2/(2+(3xx5)/9)))` `implies1+1/(1+2/(18+15)/9)` `implies 1+1/(1+18/33)` `implies 1+1/((33+18)/33)` `implies 1+33/51` `implies(51+33)/51` `implies84/51implies1 11/17` |
|
| 241. |
Multiplication of \(\frac{72}{100}\) and \(\frac{175}{108}\) is:1. \(\frac{7}{6}\)2. \(\frac{14}{3}\)3. \(\frac{7}{12}\)4. \(\frac{7}{3}\) |
|
Answer» Correct Answer - Option 1 : \(\frac{7}{6}\) Given: \(\frac{72}{100}\) \(\frac{175}{108}\) Formula Used: \( \frac{a}{b} \times \frac{c}{d} = \;\frac{{ac}}{{bd}}\) Calculation: \(\frac{{72}}{{100}} \times \frac{{175}}{{108}}\) \( \Rightarrow \frac{2}{{100}} \times \frac{{175}}{3}\) \( \Rightarrow \frac{2}{4} \times \frac{7}{3}\) \( \Rightarrow \frac{1}{2} \times \frac{7}{3}\) \( \Rightarrow \;\frac{7}{6}\) ∴ The Multiplication of \(\frac{72}{100}\) and \(\frac{175}{108}\) is \(\frac{7}{6}\) |
|
| 242. |
`17xx123div41+9=?`A. `(144)/(7)`B. 60C. 44D. 52 |
|
Answer» Correct Answer - B `17xx123 div 41+9=?` `?=17xx(123)/(41)+960` |
|
| 243. |
`12^(2)+9^(2)=?+108`A. 112B. 96C. 108D. 117 |
|
Answer» Correct Answer - D `12^(2)+9^(2)=?+108` `144+81-108=?` ?=117 |
|
| 244. |
`(270)/(?)=19xx2-2^(3)`A. 9B. 5C. 6D. 7 |
|
Answer» Correct Answer - A `(270)/(?)=19xx2-2^(3)` `(270)/(?)=38-8` `?=(270)/(30)=9` |
|
| 245. |
`23xx12-?=3^(5)`A. 33B. 32C. 47D. 27 |
|
Answer» Correct Answer - A `23xx12-?=3^(5)` 276-243=? ?=33 |
|
| 246. |
`sqrt(8+sqrt(57+sqrt(38+sqrt(108+sqrt(169)))))=?`A. 4B. 6C. 8D. 10 |
|
Answer» Correct Answer - A According to the question `impliessqrt(8+sqrt(57+sqrt(38+sqrt(108+sqrt(169)))))` `implies sqrt(8+sqrt(57+sqrt(38+sqrt(108+13))))` `implies sqrt(8+sqrt(57+sqrt(38+sqrt(108+13))))` `implies sqrt(8+sqrt(57+sqrt(38+sqrt(121))))` `implies sqrt(8+sqrt(57+sqrt(38+11)))` `implies sqrt(8+sqrt(57+sqrt(49)))` `implies sqrt(8+sqrt(57+7))impliessqrt(8+sqrt(64)` `implies sqrt(8+8)impliessqrt(16)=4` |
|
| 247. |
`sqrt(144)+sqrt(169)=?^(2)`A. 3B. 6C. 5D. 9 |
|
Answer» Correct Answer - C `sqrt(144)+sqrt(169)=?^(2)` `12+13=?^(2)` `?^(2)=25` ?=5 |
|
| 248. |
If a+ b + c = 0, then the value of \(\frac{1}{{{b^2} + {c^2} - {a^2}}} + \frac{1}{{{c^2} + {a^2} - {b^2}}} + \frac{1}{{{a^2} + {b^2} - {c^2}}}\) is1. 32. 03. 14. None of the above |
|
Answer» Correct Answer - Option 2 : 0 Given a + b + c = 0 Formula used (a + b)2 = a2 + b2 + 2ab Calculation a + b + c = 0 ⇒ a + b = -c On squaring both sides, we get (a + b)2 = c2 ⇒ a2 + b2 + 2ab = c2 ⇒ a2 + b2 - c2 = -2ab ______(1) Similarly, b2 + c2 - a2 = -2bc _____(2) And c2 + a2 - b2 = -2ca _____(3) Then using equation (1), (2) and (3) \(\Rightarrow \frac{1}{{{b^2} + {c^2} - {a^2}}} + \frac{1}{{{c^2} + {a^2} - {b^2}}} + \frac{1}{{{a^2} + {b^2} - {c^2}}} = {1 \over -2bc} + {1 \over -2ca} + {1 \over -2ab}\) \(\Rightarrow {-1 \over 2}({1 \over bc} + {1 \over ca} + {1 \over ab})\) \(\Rightarrow {-1 \over 2}({a + b + c \over abc}) = 0\) |
|
| 249. |
If 22x-1 = 83x, then the value of x is1. -1/72. -73. 24. 3 |
|
Answer» Correct Answer - Option 1 : -1/7 Given: 22x-1 = 83x Calculation: 22x-1 = 83x ⇒ 22x - 1 = 29x ⇒ 2x - 1 = 9x ⇒ 7x = - 1 ∴ Value of x = - 1/7 |
|
| 250. |
If 16x - 2 × 22x + 12 = 42x + 6, then find the value of x.1. 32. 43. 54. 2 |
|
Answer» Correct Answer - Option 2 : 4 Given: 16x - 2 × 22x + 12 = 42x + 6 Concept Used: am × an = am + n If, xp = xq, then p = q Calculations: 16x - 2 × 22x + 12 = 42x + 6 16 = 24, 4 = 22 ⇒ 24 × (x - 2) × 22x + 12 = 22 × (2x + 6) ⇒ 2(4x - 8) × 22x + 12 = 2(4x + 12) am × an = am + n ⇒ 2(4x - 8 + 2x + 12) = 2(4x + 12) ⇒ 2(6x + 4) = 2(4x + 12) Now, xp = xq ⇒ 6x + 4 = 4x + 12 ⇒ 2x = 8 ⇒ x = 4 ∴ The value of x is 4. |
|