InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 301. |
If a/b=3/4 and 8a + 5b = 22,then find the value of a. |
|
Answer» (a/b)=3/4 b=(4/3) a. 8a+5b=22 8a+5*(4/3) a=22 8a+(20/3) a=22 44a = 66 a=(66/44)=3/2 |
|
| 302. |
Village X has a population of 68000,which is decreasing at the rate of 1200 per year. Village Y has a population of 42000,which is increasing at the rate of 800 per year .in how many years will the population of the two villages be equal? |
|
Answer» Let the population of two villages be equal after p years Then,68000-1200p = 42000 + 800p 2000p = 26000 p=13 |
|
| 303. |
Find the value of (75983*75983- 45983*45983/30000) |
|
Answer» Given expression=(75983)2 -(45983)2 /(75983-45983) =(a-b)2 /(a-b) =(a+b)(a-b)/(a-b) =(a+b) =75983+45983 =121966 |
|
| 304. |
Simplify: (i) 12.05 * 5.4 + 0.6 (ii) 0.6 * 0.6 + 0.6 * 0.6 |
|
Answer» (i) Given exp. = 12.05*(5.4/0.6) = (12.05*9) = 108.45 (ii) Given exp. = 0.6*0.6+(0.6*6) = 0.36+0.1 = 0.46 |
|
| 305. |
4/15 of 5/7 of a number is greater than 4/9 of 2/5 of the same number by 8. What is half of that number? |
|
Answer» Let the number be x. then 4/15 of 5/7 of x-4/9 of 2/5 of x=8 4/21x-8/45x=8 (4/21-8/45)x=8 (60-56)/315x=8 4/315x=8 x=(8*315)/4=630 1/2x=315 Hence required number = 315. |
|
| 306. |
122-42/92-32 = ?(a) 1 7/9(b) 1 8/9(c) 1 1/3(d) 9 |
| Answer» (a) ? = (12+ 4) (12 -4)/ (9 +3)(9 -3)= 16 x 8/12 x 6 = 16/9= 1 7/9 | |
| 307. |
18800 ÷ 470 ÷ 20 = ? (a) 800 (b) 2 (c) 23.5 (d) 0.10 (e) None of these |
| Answer» (b) ?= 18800/470 ÷ 20 = 40 ÷ 20 = 2 | |
| 308. |
Simplify: (i) 5005-5000+10 (ii) 18800+470+20 |
|
Answer» (i) 5005 - 5000 + 10 = 5005 - (5000/10) = 5005 - 500 = 4505. (ii)18800 + 470 + 20 = (18800/470) + 20 = 40/20 = 2. |
|
| 309. |
The value of 'm' for which 5m ÷ 5-3 = 55 is:1. 52. 33. 24. 1 |
|
Answer» Correct Answer - Option 3 : 2 Given :- 5m ÷ 5-3 = 55 Concept :- am ÷ an = am - n am = an , then (m = n) Calculation :- ⇒ 5m ÷ 5-3 = 55 ⇒ 5(m - (-3)) = 55 ⇒ 5(m + 3) = 55 Now from above condition ⇒ m + 3 = 5 ⇒ m = 5 - 3 = 2 ⇒ m = 2 ∴ m = 2 |
|
| 310. |
A board 7ft. 9 inches long is divided into 3 equal parts . What is the length of each part? |
|
Answer» Length of board=7ft. 9 inches=(7*12+9)inches=93 inches. Length of each part = (93/3) inches = 31 inches = 2ft. 7 inches |
|
| 311. |
If 2x+3y+z=55,x-y=4 and y - x + z=12,then what are the values of x , y and z? |
|
Answer» The given equations are: 2x+3y+z=55 …(i); x + z - y=4 …(ii); y -x + z =12 …(iii) Subtracting (ii) from (i), we get: x+4y=51 …(iv) Subtracting (iii) from (i), we get: 3x+2y=43 …(v) Multiplying (v) by 2 and subtracting (iv) from it, we get: 5x=35 or x=7. Putting x=7 in (iv), we get: 4y=44 or y=11. Putting x=7,y=11 in (i), we get: z=8. |
|
| 312. |
Evaluate: \(\sqrt[3]{0.3\space \times \space0.3\space \times\space 0.3 \space+\space 0.06\space \times \space0.06\space \times \space0.06\over0.6\space \times\space 0.6\space \times\space 0.6 \space+ \space0.12\space \times\space 0.12\space\times\space 0.12 }\)1. 0.0362. 0.1253. 0.54. 1 |
|
Answer» Correct Answer - Option 3 : 0.5 Concept used: Calculation: |
|
| 313. |
if x/y = 4/5, then the value of 5/8 + (y - x)/(y + x) is1. \(\frac{49}{72}\)2. \(\frac{53}{72}\)3. \(\frac{23}{24}\)4. None of the above |
|
Answer» Correct Answer - Option 2 : \(\frac{53}{72}\) Given: x/y = 4/5 Calculations: (y - x) divide each term with y = [(y/y) - (x/y)] ⇒ (1 - x/y) (y + x) divide each term with y = [(y/y) + (x/y)] ⇒ (1 + x/y) (5/8) + (y - x)/(y + x) = 5/8[(1 - x/y) ÷ (1 + x/y)] ⇒ (5/8) + [(1 - 4/5) ÷ (1 + 4/5)] = (5/8) + {[(5 - 4)/5] ÷ [(5 + 4)/5]} ⇒ (5/8) + {[(5 - 4)/5] ÷ [(5 + 4)/5]} = (5/8) + [(1/5) ÷ (9/5)] ⇒ 5/8 + 1/9 = (5× 9 + 1 × 8)/(8 × 9) ⇒ (45 + 8)/72 = 53/72 ∴ The required value is 53/72 |
|
| 314. |
If 3 * 4 = 5 and 2 * 5 = √29, then the value of 6 * 8 is1. 142. √413. 104. None of the above |
|
Answer» Correct Answer - Option 3 : 10 Given: 3 * 4 = 5 2 * 5 = √29 Calculations: (32 + 42)1/2 = (9 + 16)1/2 ⇒ (25)1/2 = 5 (22 + 52)1/2 = (4 + 25)1/2 ⇒ (29)1/2 = √29 In the same way (62 + 82)1/2 = (36 + 64)1/2 ⇒ (100)1/2 = 10 ∴ The required value is 10 It is in the form of Pythagoras theorem a2 + b2 = c2 \(\sqrt{a^2 + b^2} = c \) |
|
| 315. |
In a classroom the number of boys is three times the number of girls. Which of the following numbers does not represent the total number of student in the classroom?1. 402. 423. 444. 48 |
|
Answer» Correct Answer - Option 2 : 42 Given: In a classroom, the number of boys is three times the number of girls Let us assume that the number of girls is = G students Now, The number of boys will be = 3G students Calculation: Now the Total number of students in a classroom will be = sum of the boys and the girls = 3G + G = 4G ⇒ Check from the option which is not the multiple of 4 ∴ Only 42 is not the multiple of 4 |
|
| 316. |
9/? x 33824 = 63(a) 4228 (b) 4832 (c) 2416 (d) 8456 (e) None of these |
|
Answer» (b) 9/? x 33824 = 63 or ? = 9 x 33824/63= 4832 |
|
| 317. |
What will come in place of question mark (?) in the following questions?133 + 253 = ? - 2421. 17,2822. 18,3983. 19,7734. 14,3645. 15,542 |
|
Answer» Correct Answer - Option 2 : 18,398 Given :- 133 + 253 Calculation :- ⇒ 133 = 13 × 13 × 13 = 2197 ⇒ 253 = 25 × 25 × 25 = 15625 ⇒ 242 = 576 Now, ⇒ 133 + 253 + 576 = ? ⇒ 2197 + 15625 + 576 = 18398 ∴ 133 + 253 + 24 2 = 18,398 = ? |
|
| 318. |
If (p/q)3x – 4 = (q/p)2x – 5, then find x.1. 9/52. 83. 74. None of these |
|
Answer» Correct Answer - Option 1 : 9/5 Given∶ (p/q)3x – 4 = (q/p)2x – 5 Formula Used∶ (1/a)m = (a/1)m, when xa = xb, then a = b Calculation∶ (p/q)3x – 4 = (q/p)2x – 5 ⇒ (p/q)3x – 4 = (p/q)-(2x – 5) ⇒ (p/q)3x – 4 = (p/q)5-2x Or, 3x – 4 =5 – 2x ⇒ 3x + 2x = 5 + 4 ⇒ 5x = 9 ⇒ x = 9/5 ∴ The required value of x is 9/5 |
|
| 319. |
Solve \(4\dfrac{2}{3}+ 3\dfrac{1}{2}-1\dfrac{2}{3}=?\)1. \(2\dfrac{1}{5}\)2. \(2\dfrac{5}{3}\)3. \(1\dfrac{3}{4}\)4. \(6\dfrac{1}{2}\) |
|
Answer» Correct Answer - Option 4 : \(6\dfrac{1}{2}\) Calculation: ⇒ \(4\dfrac{2}{3}+ 3\dfrac{1}{2}-1\dfrac{2}{3}\) ⇒ \(\dfrac{14}{3}+ \dfrac{7}{2}-\dfrac{5}{3}\) ⇒ \(\dfrac{28 + 21 - 10}{6}\) ⇒ \(\dfrac{49 - 10}{6}\) ⇒ \(\dfrac{39}{6}\) = \(\dfrac{13}{2}\) = \(6\dfrac{1}{2}\) ∴ Solution for \(4\dfrac{2}{3}+ 3\dfrac{1}{2}-1\dfrac{2}{3}\) is \(6\dfrac{1}{2}\).
|
|
| 320. |
13√13 × 133 ÷ 13-3/2 = 13q+4, find the value of q.1. 42. 33. 24. 1 |
|
Answer» Correct Answer - Option 3 : 2 Given∶ 13√13 × 133 ÷ 13-3/2 = 13q + 4 Formula Used∶ m√a = (a)1/m, am × an = am + n When xa = xb, then a = b Calculation∶ [13. (13)1/2 × 133]/(13)-3/2 = 13q + 4 ⇒ 131 + (1/2) + 3. 133/2 = 13q+4 ⇒ 131 + (1/2) + 3 + (3/2) = 13q + 4 ⇒ 136 =13q + 4 ⇒ q + 4 = 6 ⇒ q = 6 – 4 = 2 ∴ The value of q is 2. |
|
| 321. |
Solve: 2 (14 + 6 - 5) = _________.1. 282. 323. 304. 34 |
|
Answer» Correct Answer - Option 3 : 30 Calculation: ⇒ 2 (14 + 6 - 5) ⇒ 2 × 15 = 30 ∴ Solution is 30. |
|
| 322. |
Solve for x and y, when (√243)x ÷ 3y+1 = 1 and 81(4) – (x/2) – 27y = 01. 3, 42. 5, 43. 2, 44. 4, 3 |
|
Answer» Correct Answer - Option 3 : 2, 4 Given∶ (√243)x ÷ 3y+1 = 1, also 81(4) – (x/2) – 27y = 0 Formula Used∶ √a = (a)1/m, (am)n = am × n, am ÷ an = am – n Calculation∶ (√243)x ÷ 3y+1 = 1 {(35)1/2}x ÷ 3y+1 = 1 (35/2)x ÷ 3y+1 = 1 35x/2 ÷ 3y+1 = 1 3(5x/2) – (y + 1) = 30 (5x/2) – (y + 1) = 0 (5x/2) – y – 1 = 0 5x – 2y – 2 = 0 ----(1) Also, 814 – (x/2) – 27y = 0 (34)[4 - (x/2)] – (33)y = 0 316 – (4x/2) – 33y = 0 316 – 2x = 33y 16 – 2x = 3y 2x + 3y – 16 = 0 ----(2) Multiply equation (1) by 3 and equation (2) by 2 15x – 6y – 6 = 0 Or, 15x – 6y = 6 ----(3) 4x + 6y – 32 = 0 ----(4) Add equation (3) and (4) (15x – 6y = 6) + (4x + 6y = 32) ⇒ 19x = 38 ⇒ x = 2 Put x = 2 in equation (1) 5x – 2y – 2 = 0 ⇒ 5(2) – 2y – 2 = 0 ⇒ 10 – 2y – 2 = 0 ⇒ 2y = 8 ⇒ y = 8/2 = 4 ⇒ x = 2, y = 4 ∴ The value of x and y is 2 and 4. |
|
| 323. |
Solve: 81 : 810 = ?1. 1 : 102. 5 : 23. 10 : 14. 5 : 1 |
|
Answer» Correct Answer - Option 1 : 1 : 10 Given 81 : 810 Calculation 81 × 10 = 810 In the same way, 1 × 10 =10 ⇒ 1 : 10
|
|
| 324. |
The value of \(1 - \frac{1}{{1 - \frac{1}{{1 - \frac{1}{x}}}}}\) is1. \(\frac{1}{x}\)2. x + 13. x4. None of the above |
|
Answer» Correct Answer - Option 3 : x Given: \(1 - \frac{1}{{1 - \frac{1}{{1 - \frac{1}{x}}}}}\) Calculations: \(1 - \frac{1}{{1 - \frac{1}{{1 - \frac{1}{x}}}}}\) ⇒ \(1 - \frac{1}{{1 - \frac{1}{{\frac{x - 1}{x}}}}}\) ⇒ \(1 - \frac{1}{{1 - \frac{x}{{{x - 1}{}}}}}\) ⇒ \(1 - \frac{1}{{\frac{x - 1 - x}{{{x - 1 }{}}}}}\) ⇒ \(1 - \frac{x - 1}{{{ -1}{{{}}}}}\) ⇒ 1 + x - 1 ⇒ x ∴ The required value of the given expression is x |
|
| 325. |
Find the value of (-7)21. 492. -493. 144. 7 |
|
Answer» Correct Answer - Option 1 : 49 Calculation: Required value = (-7)2 ⇒ 49 ∴ The required value is 49 |
|
| 326. |
Solve: (65)2 = __________1. 42252. 30153. 30554. 3705 |
|
Answer» Correct Answer - Option 1 : 4225 Calculation: 652 = 4225 ∴ The value of 652 is 4225 |
|
| 327. |
Solve: (15)2 = __________1. 242. 2153. 2254. 205 |
|
Answer» Correct Answer - Option 3 : 225 Given: Number is (15)2 Identity used: (a + b)2 = a2 + b2 + 2ab Calculation: (15)2 = (10 + 5)2 ⇒ (10)2 + 52 + 2 × 10 × 5 = 100 + 25 + 100 ∴ 225 Or we can simply calculate the vaue of 15 × 15 i.e.225 |
|
| 328. |
`3sqrt(13824)xxsqrt(?)=864`A. 1296B. 1156C. 1600D. 1024 |
|
Answer» Correct Answer - A `3sqrt(13824)xxsqrt(?)=864` `3sqrt(24xx24xx24)xxsqrt(?)=864` `3sqrt(24xx24xx24)xxsqrt(?)=864` `rArr 24xxsqrt(?)=864` `rArr sqrt(?)=(864)/(24)` `:. ?=36xx36=1296` |
|
| 329. |
`(91)^(2)+(41)^(2)-sqrt(?)=9858`A. 11236B. 10816C. 10404D. 9604 |
|
Answer» Correct Answer - B `(91)^(2)+(41)^(2)-sqrt(?)=9858` `rArr 8281+1681-sqrt(?) = 9858` `rArr sqrt(?)=9962-9858=104` `:. ?=104xx104=10816` |
|
| 330. |
For a charity show, the total tickets sold were 420. Half of these tickets were sold at the rate of Rs. 5 each, one-third at the rate of Rs. 3 each and the rest for Rs. 2 each. What was the total amount received?1. Rs. 9002. Rs. 1,5403. Rs. 1,6104. Rs. 2,000 |
|
Answer» Correct Answer - Option 3 : Rs. 1,610 Given: The total ticket sold = 420 Calculation: According to the question, Half of the ticket sold at the rate of Rs. 5 each 420 × (1/2) × 5 = Rs. 1,050 one-third at the rate of Rs. 3 each 420 × (1/3) × 3 = Rs. 420 Remaining tickets ⇒ 420 - {420 × (1/2) + 420 × (1/3)} ⇒ 420 - (210 + 140) = 70 According to the question, The remaining tickets are are sold at rate Rs. 2 each ⇒ 70 × 2 = Rs. 140 Total amount recieved = 1,050 + 420 + 140 = Rs. 1,610 ∴ The total amount recived is Rs. 1,610 |
|
| 331. |
`3(7)/(11)+7(3)/(11)xx1(1)/(2)=?`A. `13(10)/(11)`B. `14(6)/(11)`C. `14(9)/(11)`D. `10(17)/(22)` |
|
Answer» Correct Answer - B `3(7)/(11)+7(3)/(11)xx1(1)/(2) = (40)/(11)+(80)/(11)xx(3)/(2)=(160)(11)=14(6)/(11)` |
|
| 332. |
`4900div28xx444div12=?`A. 6575B. 6475C. 6455D. 6745 |
|
Answer» Correct Answer - B `?= 4900 div 28 xx 444div12` `rArr ?=175xx37` `rArr ?=6475` |
|
| 333. |
`125%"of"260+? % "of" 700=500`A. 32B. 56C. 23D. None of these |
|
Answer» Correct Answer - D `125 % of 260+?% "of" 700=500` `rArr ?% "of" 700 = 500-125% "of" 260` `rArr ?% " of" 700 = 175` `:. ?=(175xx100)/(700)=25` |
|
| 334. |
(98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870 ) = 55(a) 2354 (b) 2368 (c) 2254 (d) 2404 (e) None of these |
|
Answer» (a) (98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870) = 55 or 354750 ÷ (? + 4096) = 55 or 354750/ ? + 4096 = 55 ? + 4096= 354750/55 or ? + 4096 = 354750/55 or ? + 4096 = 6450 or ? = 6450 – 4096 = 2354 |
|
| 335. |
Solve: 16 - [14 - {2 + 6 × (4 - 3)}]1. 72. 23. 104. 6 |
|
Answer» Correct Answer - Option 3 : 10 Concept BODMAS rule will be apply. Calculation 16 - [14 - {2 + 6 × 1} ⇒ 16 - [14 - { 2 + 6} ⇒ 16 - [14 - 8] ⇒ 16 - 6 ⇒ 10
|
|
| 336. |
\(\frac{7}{{\frac{8}{9}}}\;\) exceeds \(\frac{8}{{\frac{9}{7}}}\;\) by ?1. 72/1092. 109/723. 72/1194. 119/72 |
|
Answer» Correct Answer - Option 4 : 119/72 \(\frac{7}{{\frac{8}{9}}}\;\) - \(\frac{8}{{\frac{9}{7}}}\;\) = 63/8 - 56/9 = (63 × 9 - 56 × 8)/72 = (567 - 448)/72 = 119/72 |
|
| 337. |
If two thirds of a number is 2016, what will be 1/18 of that number?1. 2642. 2663. 1684. 164 |
|
Answer» Correct Answer - Option 3 : 168 Given: If two thirds of a number is 2016 Calculation: Let be the number be x According to the question, ⇒ (2/3)x = 2016 ⇒ x = 2016 × (3/2) ⇒ x = 3024 1/18 of the x ⇒ (1/18)× 3024 ⇒ 168 ∴ 1/18 of that number will be 168. |
|
| 338. |
The product of 22 × 22000 × 2 using law of exponents is equal to. 1. 240012. 240003. 220034. 22002 |
|
Answer» Correct Answer - Option 3 : 22003 Given: 22 × 22000 × 2 Formula used: am × an = am +n Calculation: 22+2000+1 = 22003 ∴ The required answer is 22003 . |
|
| 339. |
\((4)^{\frac{-3}{2}}=?\)A. 1/4B. 8C. 1/8D. 41. B2. A3. C4. D |
|
Answer» Correct Answer - Option 3 : C 4(-3/2) = ? 2(2 × -3/2) = ? 2(-3) = ? 1/23= ? 1/8= ? |
|
| 340. |
Solve:1/7 – 3/4 + 5/7 = ?1. 5/142. 3/283. 8/144. 14/9 |
|
Answer» Correct Answer - Option 2 : 3/28 Calculation: (1/7) – (3/4) + (5/7) = ? ⇒ (4 – 21 + 20)/28 = ? ⇒ 3/28 = ? ∴ The value of ? is 3/28 |
|
| 341. |
Solve 1/7 - 3/4 + 5/7 = ?1. 5/142. 3/283. 8/144. 14/9 |
|
Answer» Correct Answer - Option 2 : 3/28 Calculation: (1/7) – (3/4) + (5/7) = ? ⇒ (4 – 21 + 20)/28 = ? ∴ 3/28 = ? ∴ The value of ? is 3/28 |
|
| 342. |
20% of X = 400. Find the value of X ?1. 20002. 21003. 18004. 1900 |
|
Answer» Correct Answer - Option 1 : 2000 Calculation: 20% of X = 400 ⇒ X/5 = 400 ⇒ X = 400 × 5 ⇒ 2000 ∴ The value of X is 2000 |
|
| 343. |
Find the value(approx.) of \(3 + \frac{4}{{5 + \frac{7}{{2 + \frac{6}{{8 + \frac{7}{{2 + \frac{1}{3}}}}}}}}}\)1. 52. 43. 74. 8 |
|
Answer» Correct Answer - Option 2 : 4 Calculation: Calculate this continued fraction from bottom \( ⇒ 3 + \frac{4}{{5 + \frac{7}{{2 + \frac{6}{{8 + \frac{7}{{2 + \frac{1}{3}}}}}}}}}\) \( ⇒ 3 + \frac{4}{{5 + \frac{7}{{2 + \frac{6}{{8 + \frac{{21}}{7}}}}}}}\) \( ⇒ 3 + \frac{4}{{5 + \frac{7}{{2 + \frac{{6}}{{11}}}}}}\) \( ⇒ 3 + \frac{4}{{5 + \frac{{77}}{{28}}}}\) \( ⇒ 3 + \frac{{112}}{{217}}\) \( ⇒ \frac{{763}}{{217}}\) ⇒ 109/31 ∴ The value(approx.) of 4. Note: 109/31 = 3.51, According to the question and given Option 4 is the correct answer, 4 is the nearest approx value. |
|
| 344. |
If N = 0.738738738738... and M = 0.531531531531....., then what is the value of (1/N) + (1/M)?1. 2448/111002. 15651/48383. 11100/24194. 1897/3162 |
|
Answer» Correct Answer - Option 2 : 15651/4838 Given: N = 0.738738738... M = 0.531531531... Concept: Non-terminating repeating decimal or recurring decimal:- A decimal fraction in which a figure or group of figures is repeated indefinitely, as in 0.7777 or as in 1.445445445. Ex- 0.333... = 0.3̅ = 3/9 Calculation: N = 0.738738738... = \(0.\overline {738} = \frac{{738}}{{999}}\) M = 0.531531531... = \(0.\overline {531} = \frac{{531}}{{999}}\) ⇒ N = 738/999 = 82/111 ⇒ M = 531/999 = 59/111 Now, (1/N) + (1/M) = (111/82) + (111/59) \( ⇒ \frac{{111\: ×\: 59\:+ \:111\: × \:82}}{{82\; ×\: 59}}\) \(⇒ \frac{{111\left( {59\; + \;82} \right)}}{{82\; ×\: 59}} = \;\frac{{111\; × \;141}}{{82\; × \:59}}\) ⇒ 15651/4838 Shortcut: Given: N = 0.738738738... M = 0.531531531... Calculation: N = 0.738738738... = \(0.\overline {738} = \frac{{738}}{{999}}\) M = 0.531531531... = \(0.\overline {531} = \frac{{531}}{{999}}\) ⇒ N = 738/999 = 82/111 ⇒ M = 531/999 = 59/111 (1/N) + (1/M) = (111/82) + (111/59) unit digit of dominator = 2 and 9 = 2 × 9 = 18 ∴ we check option which unit digit of dominator is 8, that is my answer. In option only option b which unit digit is 8 so that is my answer. |
|
| 345. |
If a2/49 = 4 then find a?1. 142. 123. 114. 24 |
|
Answer» Correct Answer - Option 1 : 14 Given: a2/49 = 4 Calculations: a2/49 = 4 ⇒ a2 = 4 × 49 ⇒ a = √4 × √49 ⇒ a = 2 × 7 ⇒ a = 14 |
|
| 346. |
If (3,375)1/3 ÷ b = 5 then find b3.1. 32. 93. 274. 81 |
|
Answer» Correct Answer - Option 3 : 27 Given: (3,375)1/3 ÷ b = 5 Concept used: (15)3 = 3,375 Calculation: (3,375)1/3 ÷ b = 5 ⇒15 ÷ b = 5 ⇒ 15 / b = 5 ⇒ b = 15 / 5 ⇒ b = 3 ⇒ b3 = 33 ⇒ b3 = 27 |
|
| 347. |
Find the two operations to be converted to correct the following equation.((3 × 10 + 14) ÷ 4) - 2 = 6 1. Multiplication and addition2. Division and multiplication3. Addition and subtraction4. Subtraction and division |
|
Answer» Correct Answer - Option 3 : Addition and subtraction Calculation: ((3 × 10 + 14) ÷ 4) – 2 = 6 Option 1: Multiplication and addition ((3 + 10 × 14) ÷ 4) – 2 = 33.75 Option 2: Division and multiplication ((3 ÷ 10 × 14) × 4) – 2 = 55.2 Option 3: Addition and subtraction ((3 × 10 – 14) ÷ 4) + 2 = 16/4 + 2 = 6 Option 4: Subtraction and division ((3 × 10 + 14) – 4) ÷ 2 = (44 – 4) ÷ 2 = 20 ∴ Option 3 is correct |
|
| 348. |
`(1)/(5)xx(5)/(7)div (6)/(7)=?`A. `1/5`B. `3/5`C. `1/6`D. `2/7` |
|
Answer» Correct Answer - C `1/5xx5/7xx7/6=1/6` |
|
| 349. |
`2615-4361+2881=?xx20`A. `65.75`B. `58.75`C. `54.25`D. None of these |
|
Answer» Correct Answer - D `2615-4361+2881=?xx20` or, `5496-4361=?xx20` or, `1135=?xx20` or, `?=(1135)/(20)=56.75` |
|
| 350. |
One hundredth of centimeter when written in fractions of kilometers, is equal to1. 0.00000012. 0.0000013. 0.00014. 0.001 |
|
Answer» Correct Answer - Option 1 : 0.0000001 Given: The one-hundredth of centimeter when written in terms of kilometers is as shown below. Calculation: As 1 km = 1000 m ( where km = kilometer, m = meter ) And 1 m = 100 cm ( where cm = centimeter ) Now, as given in the question one hundredth ( 1/100 ) of 1 cm ⇒ As, we can see 1 km = 105 cm ⇒ ( 1 cm )/ ( 100× 105 ) ∴ 10-7 = 0.0000001 (The one-hundredth of centimeter) |
|