InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Solve: int (4t^2 + 10 / (t^2 + 3)(t^2+4)) * dt\(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\) |
|
Answer» \(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\) = \(\int\frac{4(t^2+3)+2((t^2+4)-(t^2+3))}{(t^2+3)(t^2+4)}dt\) \(=\int(\frac4{t^2+4}-\frac2{t^2+3}+\frac3{t^2+4})dt\) \(=\int\frac{6}{t^2+4}dt-\int\frac{2}{t^2+3}dt\) \(=\frac62tan^{-1}\frac{t}2-\frac2{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\) = 3 tan-1\(\frac{t}2\) \(-\frac{2}{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\) |
|
| 2. |
Evaluate: pie/2 integrate -pie/2 |sin x + cos x| dx\(\int\limits_{\pi/2}^{\pi/2}\)|sin x + cos x| dx. |
|
Answer» I =\(\int\limits_{\pi/2}^{\pi/2}\)|sin x + cos x|dx = \(\int\limits_{-\pi/2}^{-\pi/4}\)-(sin x + cos x)dx + \(\int\limits_{-\pi/4}^{\pi/2}\)(sin x + cos x)dx = \(-[-cos x + sin x]_{-\pi/2}^{-\pi/4}dx\) + \([-cos x+sin x]_{-\pi/4}^{\pi/2}\) = -(-cos π/4 - sin π/4) + (-cos π/2 - sin π/2) + (- cos π/2 + sin π/2) - (-cos π/4 - sin π/4) (\(\because\) cos(-θ) + cos θ and sin(-θ) = -sin θ) = cos π/4 + sin π/4 - cos π/2 - sin π/2 - cos π/2 + sin π/2 + cos π/4 + sin π/4 = 2 cos π/4 + 2 sin π/4 - 2 cos π/2 = 2 x \(\frac1{\sqrt2}\) + 2 x \(\frac1{\sqrt2}\) - 2 x 0 = \(\sqrt2+\sqrt2\) = 2\(\sqrt2\) |
|
| 3. |
∫f(t) x∈[0,x] dt = x + ∫t f(t) x ∈[x,1] dt, then f(1) is equal to(a) 1/2(b) 0(c) 1(d) -1/2 |
|
Answer» Correct option (a) 1/2 Explanation: Differentiate both sides w.r.t x ⇒ f(x) = 1 + (0 - xf(x)) ⇒f(x) = 1/1 + x f(1) = 1/2 |
|
| 4. |
Area bounded by the curve y = 1/x between the limits 1 and 2 is ________ (a) log 2 sq.units (b) log 5 sq.units (c) log 3 sq.units (d) log 4 sq.units |
|
Answer» (a) log 2 sq.units Area = \(\int\limits _1^2\)1/x dx = \((logx)_1^2\) = log 2 - log 1 = log 2(Since log 1 = 0) |
|
| 5. |
If the marginal revenue function for a commodity is MR = 9 – 4x2 . Find the demand function. |
|
Answer» Given, marginal Revenue function MR = 9 – 4x2 Revenue function, R = ∫(MR) dx + k R = \(\int\)(9 - 4x2)dx + k R = 9x - 4/3x3 + k Since R = 0 when x = 0, k = 0 R = 9 x - 4/3 x3 Demand funcatiuon P = R/x P = 9 - 4/3x2 |
|
| 6. |
The area bounded by the curve y = ex , the x-axis and the lines x = 0 and x = 3 is _______ (a) e3 – 1 (b) e3 + 1 (c) e3 (d) e3 – 2 |
|
Answer» (a) e3 – 1 Area = \(\int\limits_0^3\)exdx = \((e^x)_0^3\) = e3 - 1 |
|
| 7. |
The area bounded by the demand curve xy = 1, the x - axis, x = 1, x = 5 is ______ (a) log 5 (b) log 1/5(c) log 4 (d) 1/5 log 2 |
|
Answer» (a) log 5 Area = \(\int\limits_1^5 1/xdx = (logx)_1^5 = log 5\) |
|
| 8. |
The marginal cost of a commodity is 3x2 – 2x + 8. If there is no fixed cost find the total cost. |
|
Answer» C = ∫(MC) dx + k = ∫(3x2 – 2x + 8) dx + k = x3 – x2 + 8x + k No fixed cost ⇒ k = 0 So total cost, C = x3 – x2 + 8x |
|
| 9. |
Say True or False.(a) Average cost function AC = MC/x(b) Total cost function C = ∫(MC) dx + k (c) Demand function = P = Rx (d) Elasticity of demand ηd = -p/x dx/dp(e) Under market equilibrium x0 = p0 |
|
Answer» (a) False (b) True (c) False (d) True (e) False |
|
| 10. |
The marginal revenue R'(x) = Then the revenue function is _____ (a) -1/(x +1)(b) 1/(x + 1)2(c) log 1/(x + 1)(d) log|x + 1| + k |
|
Answer» (d) log|x + 1| + k Revenue function R = ∫1/(x + 1)dx = log|x + 1| + k |
|
| 11. |
Match the following.(a) Area under curve f(x) form x = a and x = b(i) C = e3x + k(b) Area under curve g(y) form y = c and y = d(ii) R = 15x - 4x2 + k(c) MC = 3e3x(iii) \(\int\limits_a^b f(x)dx\)(d) MR = 15 - 8x(iv) \(\int\limits_c^d g(y)dy\) |
|
Answer» (a) – (iii) (b) – (iv) (c) – (i) (d) – (ii) |
|
| 12. |
If demand function p = 35 – 2x – x2 and demand x0 = 3, then market price p0 is ________ |
|
Answer» p0 = 35 – 2(3) – 33 = 35 – 6 – 9 = 20 |
|
| 13. |
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is Rs. 120. Find the profit function. |
|
Answer» MC = C'(x) = 5 + 0.13x C(x) = ∫C'(x) dx + k1 = ∫(5 + 0.13x) dx + k1 = 5x + 0.13/2 x2 + k1 When quantity produced is zero, fixed cost is 120 (i.e) When x = 0, C = 120 ⇒ k1 = 120 Cost function is 5x + 0.065x2 + 120 Now given MR = R'(x) = 18 R(x) = ∫18 dx + k1 = 18x + k2 When x = 0, R = 0 ⇒ k2 = 0 Revenue = 18x Profit P = Total Revenue – Total cost = 18x – (5x + 0.065x2 + 120) Profit function = 13x – 0.065x2 – 120 |
|
| 14. |
The marginal cost of producing x units is C'(x) = 10.6x. The fixed cost is Rs. 50. The selling price per unit is Rs.5. Find (i) total cost function (ii) total revenue function and (iii) profit function. |
|
Answer» Given C'(x) = 10.6x C'(x) = ∫(10.6x) dx + k = 10.6 x2/2 + k = 5.3x2 + k The fixed cost is Rs. 50 (i.e.) when x = 0, c = 50 ⇒ k = 50 Hence cost function C = 5.3x2 + 50 Now, total revenue = number of units sold × price/unit Since x be the number of units sold. The selling price is Rs.5 per unit. Revenue R(x) = 5x Profit P = Total revenue – Total cost = 5x – (5.3x2 + 50) = 5x – 5.3x2 – 50 |
|
| 15. |
If the marginal revenue of a firm is constant, then the demand function is ________ (a) MR (b) MC (c) C(x) (d) AC |
|
Answer» (a) MR MR = k (constant) Revenue function R = ∫(MR) dx + c1 = ∫kdx + c1 = kx + c1 When R = 0, x = 0, ⇒ c1 = 0 R = kx Demand function p = R/x = kx/x = k constant ⇒ p = MR |
|
| 16. |
The demand and supply functions are given by D(x) = 16 – x2 and S(x) = 2x2 + 4 are under perfect competition, then the equilibrium price x is ________ (a) 2 (b) 3 (c)4 (d) 5 |
|
Answer» (a) 2 D(x) = 16 – x2 , S(x) = 2x2 + 4 Under equilibriuim, D(x) = S(x) ⇒ 16 – x2 = 2x2 + 4 ⇒ 3x2 = 12 ⇒ x = ±2. Since x cannot be negative x = 2. |
|
| 17. |
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is _______ (a) 40 (b) 41/2(c) 40/3(d) 41/5 |
|
Answer» (c) 40/3 D(x) = S(x) in equilibrium 20 – 5x = 4x + 8 9x = 12 x = 4/3 = x0 p0 = 20 – 5(4/3) = 20 - 20/3 = 40/3 |
|
| 18. |
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is ________(a) P = ∫(MR – MC) dx + k (b) P = ∫(MR + MC) dx + k (c) P = ∫(MR) (MC) dx + k (d) P = ∫(R – C) dx + k |
|
Answer» (a) P = ∫(MR – MC) dx + k |
|
| 19. |
The marginal revenue and marginal cost functions of a company are MR = 30 – 6x and MC = -24 + 3x where x is the product, then the profit function is _______(a) 9x2 + 54x (b) 9x2 – 54x (c) 54x – 9x2/2(d) 54x – 9x2/2 + k |
|
Answer» (d) 54x – 9x2/2 + k Profit = ∫(MR – MC) dx + k = ∫(30 – 60) – (-24 + 3x) dx + k = ∫(54 – 9x) dx + k = 54x – 9x2/2 + k |
|
| 20. |
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to _______ (a) 3 (b) 6 (c) 9 (d) 5 |
|
Answer» (c) 9 The maximum profit occurs when MR – MC = 0 ⇒ 36x – 3x2 – 81 = 0 ⇒ x2 – 12x + 27 = 0 ⇒ (x – 9)(x – 3) = 0 ⇒ x = 9, 3 Now = dp/dx 36x2 – 3x – 81 ⇒ d2p/dx2 = 36 – 9x At x = 9, d2p/dx2 = 36 – 81 < 0 At x = 3, d2p/dx2 = 36 – 27 > 0 Therefore profit is maximum when x = 9. |
|
| 21. |
Integrate the following with respect to x.If f'(x) = ex and f(0) = 2, then find f(x). |
|
Answer» f'(x) = ex Integrating both sides of the equation, ∫ f'(x) dx = ∫ ex dx ⇒ f(x) = ex + c given f(0) = 2 2 = e0 + c ⇒ c = 1 Thus f(x) = e + 1 |
|
| 22. |
Integrate the following with respect to x. 2 cos x – 3 sin x + 4 sec2x – 5 cosec2x |
|
Answer» ∫2 cos x – 3 sin x + 4 sec2x – 5 cosec2x = 2 ∫ cos x dx – 3 ∫sin x dx + 4 ∫ sec2x – 5 ∫ cosec2x dx = 2 sin x + 3 cos x + 4 tan x + 5 cot x + c |
|
| 23. |
Which of the following is an even function? (a) sin x (b) ex – e-x (c) x cos x (d) cos x |
|
Answer» The correct answer is : (d) cos x |
|
| 24. |
∫[9/(x - 3) - 1/(x + 1)dx is _____(a) log|x – 3| – log|x + 1| + c (b) log|x – 3| + log|x + 1| + c (c) 9 log|x – 3| – log|x + 1| + c (d) 9 log|x – 3| + log|x + 1| + c |
|
Answer» (c) 9 log|x – 3| – log|x + 1| + c |
|
| 25. |
Integrate the following functions w.r.to ‘x’.(i) 1/(p + qx)(ii) cos(4x + 5) |
|
Answer» (i) ∫1/(p + qx) dx = (1/q) log(p + qx) + c (ii) ∫cos(4x + 5) dx = sin(4x + 5)/4 = (1/4) sin(4x + 5) + c |
|
| 26. |
Integrate the following functions w.r.to ‘x’.(i) cosec2(7 - 11x) (ii) sec(3 + x) tan(3 + x) |
|
Answer» (i) ∫cosec2(7 - 11x) dx = -cot(7 - 11x)/-11 = (1/11) cot(7 - 11x) + c (ii) ∫sec(3 + x) tan(3 + x) dx = sec(3 + x) + c |
|
| 27. |
Integrate the following functions w.r.to ‘x’.(i) cosec(3 – 2x) cot(3 – 2x)(ii) e3x + 2 |
|
Answer» (i) ∫cosec(3 – 2x) cot(3 – 2x) dx = -cosec(3 - 2x)/-2 = (1/2) cosec(3 - 2x) + c (ii) ∫e3x + 2 dx = e3x + 2/3 + c |
|
| 28. |
Integrate ∫(e2x - 1)/(e2x + x) dx |
|
Answer» Dividing numerator and denominator by ex, we get ∫(ex - e-x)/(ex + e-x)dx Now d/dx(ex + e-x) = ex - e-x = log(ex + e-x) +c |
|
| 29. |
if f(x) us a continous funcation and a < c b, then \(\int\limits_{a}^{c}\) f(x)dx + \(\int\limits_{c}^{b}\)f(x)dx is _____(a) \(\int\limits_{a}^{b}\)f(x)dx − \(\int\limits_{a}^{c}\)f(x)dx(b)\(\int\limits_{a}^{c}\)f(x)dx - \(\int\limits_{a}^{a}\)f(x)dx(c) \(\int\limits_{a}^{b}\)f(x)dx(d) 0 |
|
Answer» (c) \(\int\limits_{a}^{b}\)f(x)dx |
|
| 30. |
Integrate ∫1/√(x + 1)(x + 5) = ∫1/(x2 + 6x + 5)dx |
|
Answer» ∫1/√((x + 3)2 - 22)dx log|(x + 3) + √(x2 + 6x + 5| + c |
|
| 31. |
if n > 0, then Γ(n) is ........... .(a) \(\int\limits_{0}^{1}\)e-xxn-1dx(b) \(\int\limits_{0}^{1}\)e-xxndx(c)\(\int\limits_{0}^{∞}\)exx-ndx(d) \(\int\limits_{0}^{∞}\)e-xxn - 1dx |
|
Answer» (d) \(\int\limits_{0}^{∞}\)e-xxn - 1dx |
|
| 32. |
∫2xdx is .......... .(a)2xlog2 + c(b) 2x +c(c) 2x/log2 + c(d) log2/2x + c |
|
Answer» (c) 2x/log2 + c |
|
| 33. |
Γ(n) is _____ (a) (n – 1)! (b) n! (c) n Γ(n) (d) (n – 1) Γ(n) |
|
Answer» (a) (n – 1)! Γ(n) = Γ(n – 1) + 1 = (n – 1)! |
|
| 34. |
The integral of (√x + 1/√x) equals _____(a) 1/3x1/3 + 2x1/2 + c(b) 2/3x2/3 + 1/2x2 + c(c) 2/3x3/2 + 2x1/2 + c(d) 3/2x3/2 + 1/2x1/2 + c |
|
Answer» (c) 2/3x3/2 + 2x1/2 + c |
|
| 35. |
If MR = 14 – 6x + 9x2 , find the demand function. |
|
Answer» MR = 14 – 6x + 9x2 R = ∫(14 – 6x + 9x2) dx + k = 14x – 3x2 + 3x3 + k Since R = 0, when x = 0, k = 0 So revenue function R = 14x – 3x2 + 3x3 Demand function P = R/x = 14 – 3x + 3x2 |
|
| 36. |
Integrate the following with respect to ‘x’:(i) (1 + x2)-1(ii) (1 - x2)-1/2 |
|
Answer» (i) ∫(1 + x2)-1 dx = ∫1/(1 + x2) dx = tan-1 x + c (ii) ∫(1 - x2)-1/2 dx = ∫1/√(1 - x2) dx = sin-1 x + c |
|
| 37. |
If f'(x) = 4x – 5 and f(2) = 1; find f(x) |
|
Answer» ∫f'(x) dx = ∫(4x – 5) dx f(x) = 4x2/2 - 5x + c f(x) = 2x2 – 5x + c But f(2) = 1 2(2)2 – 5(2) + c = 1 8 – 10 + c = 1 c = 3 Thus, f(x) = 2x2 – 5x + 3 |
|
| 38. |
If f'(x) = 12x – 6 and f(1) = 30, f'(1) = 5 find f(x) |
|
Answer» f'(x) = – 6x + c f'(x) = 6x2 – 6x + c But f'(1) = 5 6(1)2 – 6(1) + c = 5 c = 5 f” (x) = 6x2 – 6x + 5 ∫f” (x) dx = ∫(6x2 - 6x + 5) dx f(x) = 6x3/3 - 6x2/2 + 5x + c f(x) = 2x3 – 3x2 + 5x + c But f(1) = 30 2(1)3 – 3(1)2 + 5(1) + c = 30 2 – 3 + 5 + c = 30 c = 26 f(x) = 2x3 – 3x2 + 5x + 26 |
|
| 39. |
Integrate the following with respect to ‘x’:(i) 123(ii) x24/x25(iii) ex |
|
Answer» (i) ∫123 dx = 123∫dx = 123 x + c (ii) ∫x24/x25 dx = ∫1/x dx = log|x| + c (iii) ∫ex dx = ex + c |
|
| 40. |
Integrate the with respect to x.ex sec x (1 + tan x) |
|
Answer» Let I = ∫ex (sec x + sec x tan x) dx Take f(x) = sec x f‘ (x) = sec x tan x This is of the form of ∫ex[f(x) + f'(x)] dx = ex f(x) + c = ex sec x + c |
|
| 41. |
Integrate the following with respect to ‘x’:(i) 1/sin2 x (ii) tan x/cos x(iii) cos x/sin2 x (iv) 1/cos2 x |
|
Answer» (i) ∫1/sin2 x dx = ∫cosec2 x dx = -cot x + c (ii) ∫tan x/cos x dx = ∫sec x tan x dx = sec x + c (iii) ∫cos x/sin2 x dx = ∫cosec x cot x dx = - cosec x + c (iv) ∫1/cos2 x dx = ∫sec2 x dx = tan x + c |
|
| 42. |
If f'(x) = 9x2 – 6x and f(0) = -3; find f(x) |
|
Answer» f'(x) = ∫(9x2 – 6x) dx f(x) = 9x3/3 - 6x2/2 + c f(x) = 3x3 – 3x2 + c But f(0) = -3 3(0)3 – 3(0)2 + c = -3 c = -3 Thus, f(x) = 3x3 – 3x2 – 3 f(x) = 3(x3 – x2 – 1) |
|
| 43. |
If f'(x) = 2x – 7 and f(1) = 0 find f(x) |
|
Answer» Given f’ (x) = 2x – 7 ⇒ f (x) = ∫(2x - 7) dx = x2 – 7x + c Given f(1) = 0 ⇒ 1 – 7 + c = 0 ⇒ c = 6 So f(x) = x2 – 7x + 6 |
|
| 44. |
Integrate the following with respect to x.(i) √x7(ii) (x10)1/7 |
|
Answer» (i) ∫√x7 dx = ∫(x7)1/2 dx = ∫x7/2 dx = x7/2 + 1/(7/2 + 1) = x9/2/(9/2) = (2/9)x9/2 + c (ii) ∫(x10)1/7 dx = ∫x10/7 dx = x10/7 + 1/(10/7 + 1) = x17/7/(17/7) = (7/17)x17/7 + c |
|
| 45. |
Given f”(x) = 6x + 6, f'(0) = -5 and f(1) = 6 find f(x) |
|
Answer» f” (x) = 6x + 6 ⇒ f ‘ (x) = (6x + 6) dx = 6x2/2 + 6x + c = 3x2 + 6x + c Given f ‘(0) = -5 ⇒ 0 + c = -5 ⇒ c = -5 ∴ f ‘(x) = 3x2 + 6x – 5 So f(x) = ∫(3x2 + 6x - 5) dx = 3x3/3 + 6x2/2 – 5x + c (i.e.,) f(x) = x3 + 3x2 – 5x + c Given f(1) = 6 ⇒ 1 + 3 + 5 + c = 6 ⇒ c – 1 = 6 ⇒ c = 7 So f(x) = x3 + 3x2 – 5x + 7 |
|
| 46. |
Integrate the following with respect to x.(i) 1/x5(ii) x-1(iii) 1/x5/2 |
|
Answer» (i) ∫1/x5 dx = ∫x-5 dx = x-5 + 1/(-5 + 1) = x-4/-4 = -1/4x4 + c (ii) ∫x-1 dx = ∫1/x dx = log x + c (iii) ∫1/x-5/2 dx = x-5/2 + 1/(-5/2 + 1) = x-3/2/(-3/2) = -2/3x3/2 + c |
|
| 47. |
Integrate the following functions w.r.to ‘x’.(i) e3x - 6 (ii) e8 - 7x (iii) 1/(6 - 4x) |
|
Answer» (i) ∫e3x - 6 dx = (1/3)e3x - 6 + c (ii) ∫e8 - 7x dx = (-1/7)e8 - 7x + c (iii) ∫1/(6 - 4x) dx = (-1/4) log (6 - 4x) + c |
|
| 48. |
Integrate the following functions w.r.to ‘x’.(i) 1/(√(1 - (4x)2)(ii) 1/√(1 - 81x2)(iii) 1/(1 + 36x2) |
|
Answer» (i) ∫1/(√(1 - (4x)2) dx = (1/4) sin-1 4x + c (ii) ∫1/√(1 - 81x2) dx = ∫1/√(1 - (9x)2) dx = (1/9) sin-1 9x + c (iii) ∫1/(1 + 36x2) dx = ∫1/(1 + (6x)2) dx = (1/6) tan-1 6x + c |
|
| 49. |
Integrate the following functions w.r.to ‘x’.(i) sin 3x (ii) cos (5 – 11x) (iii) cosec2 (5x – 7) |
|
Answer» (i) ∫sin 3x dx = (-1/3) cos 3x + c (ii) ∫cos (5 – 11x) dx = (-1/11) sin (5 - 11x) + c (iii) ∫cosec2 (5x – 7) dx = (-1/5) cot (5x - 7) + c |
|
| 50. |
Integrate the following functions w.r.to ‘x’.(i) sec2 x/5 (ii) cosec (5x + 3) cot (5x + 3) (iii) sec (2 – 15x) tan (2 – 15x) |
|
Answer» (i) ∫sec2 x/5 dx = 5 tan x/5 + c (ii) ∫cosec (5x + 3) cot (5x + 3) dx = -1/5 cosec(5x + 3) + c (iii) ∫sec (2 – 15x) tan (2 – 15x) dx = sec(2 - 15x)/-15 + c = (-1/15)sec(2 - 15x) + c |
|