Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Solve: int (4t^2 + 10 / (t^2 + 3)(t^2+4))  *  dt\(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\)

Answer»

\(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\) = \(\int\frac{4(t^2+3)+2((t^2+4)-(t^2+3))}{(t^2+3)(t^2+4)}dt\)

\(=\int(\frac4{t^2+4}-\frac2{t^2+3}+\frac3{t^2+4})dt\)

\(=\int\frac{6}{t^2+4}dt-\int\frac{2}{t^2+3}dt\) 

\(=\frac62tan^{-1}\frac{t}2-\frac2{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\) 

 = 3 tan-1\(\frac{t}2\) \(-\frac{2}{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\)

2.

Evaluate: pie/2 integrate -pie/2 |sin x + cos x| dx\(\int\limits_{\pi/2}^{\pi/2}\)|sin x + cos x| dx.

Answer»

I =\(\int\limits_{\pi/2}^{\pi/2}\)|sin x + cos x|dx

 = \(\int\limits_{-\pi/2}^{-\pi/4}\)-(sin x + cos x)dx + \(\int\limits_{-\pi/4}^{\pi/2}\)(sin x + cos x)dx

 = \(-[-cos x + sin x]_{-\pi/2}^{-\pi/4}dx\) + \([-cos x+sin x]_{-\pi/4}^{\pi/2}\)

 = -(-cos π/4 - sin π/4) + (-cos π/2  - sin π/2) + (- cos π/2 + sin π/2) - (-cos π/4 - sin π/4)

(\(\because\) cos(-θ) + cos θ and sin(-θ) = -sin θ)

 = cos π/4 + sin π/4 - cos π/2 - sin π/2 - cos π/2 + sin π/2 + cos π/4 + sin π/4

 = 2 cos π/4 + 2 sin π/4 - 2 cos π/2

 = 2 x \(\frac1{\sqrt2}\) + 2 x \(\frac1{\sqrt2}\) - 2 x 0

 = \(\sqrt2+\sqrt2\)

 = 2\(\sqrt2\) 

3.

∫f(t) x∈[0,x] dt = x + ∫t f(t) x ∈[x,1] dt, then f(1) is equal to(a)  1/2(b)   0(c)   1(d)  -1/2

Answer»

Correct option (a) 1/2

Explanation:

Differentiate both sides w.r.t x

⇒ f(x) = 1 + (0 - xf(x)) ⇒f(x) = 1/1 + x

f(1) = 1/2

4.

Area bounded by the curve y = 1/x between the limits 1 and 2 is ________ (a) log 2 sq.units (b) log 5 sq.units (c) log 3 sq.units (d) log 4 sq.units

Answer»

(a) log 2 sq.units

Area = \(\int\limits _1^2\)1/x dx

\((logx)_1^2\)

= log 2 - log 1

= log 2(Since log 1 = 0)

5.

If the marginal revenue function for a commodity is MR = 9 – 4x2 . Find the demand function.

Answer»

Given, marginal Revenue function MR = 9 – 4x2

Revenue function, R = ∫(MR) dx + k

R = \(\int\)(9 - 4x2)dx + k

R = 9x - 4/3x3 + k

Since R = 0 when x = 0, k = 0

R = 9 x - 4/3 x3

Demand funcatiuon P = R/x

P = 9 - 4/3x2

6.

The area bounded by the curve y = ex , the x-axis and the lines x = 0 and x = 3 is _______ (a) e3 – 1 (b) e3 + 1 (c) e3 (d) e3 – 2

Answer»

(a) e3 – 1 

Area = \(\int\limits_0^3\)exdx = \((e^x)_0^3\) = e- 1

7.

The area bounded by the demand curve xy = 1, the x - axis, x = 1, x = 5 is ______ (a) log 5 (b) log 1/5(c) log 4 (d) 1/5 log 2

Answer»

(a) log 5

Area = \(\int\limits_1^5 1/xdx = (logx)_1^5 = log 5\)

8.

The marginal cost of a commodity is 3x2 – 2x + 8. If there is no fixed cost find the total cost.

Answer»

C = ∫(MC) dx + k 

= ∫(3x2 – 2x + 8) dx + k 

= x3 – x2 + 8x + k

No fixed cost ⇒ k = 0 

So total cost, C = x3 – x2 + 8x

9.

Say True or False.(a) Average cost function AC = MC/x(b) Total cost function C = ∫(MC) dx + k (c) Demand function = P = Rx (d) Elasticity of demand ηd = -p/x dx/dp(e) Under market equilibrium x0 = p0

Answer» (a) False

(b) True

(c) False

(d) True

(e) False
10.

The marginal revenue R'(x) = Then the revenue function is _____ (a) -1/(x +1)(b) 1/(x + 1)2(c) log 1/(x + 1)(d) log|x + 1| + k

Answer»

(d) log|x + 1| + k

Revenue function R = ∫1/(x + 1)dx = log|x + 1| + k

11.

Match the following.(a) Area under curve f(x) form x = a and x = b(i) C = e3x + k(b) Area under curve g(y) form y = c and y = d(ii) R = 15x - 4x2 + k(c) MC = 3e3x(iii) \(\int\limits_a^b f(x)dx\)(d) MR = 15 - 8x(iv) \(\int\limits_c^d g(y)dy\)

Answer»

(a) – (iii) 

(b) – (iv) 

(c) – (i) 

(d) – (ii)

12.

If demand function p = 35 – 2x – x2 and demand x0 = 3, then market price p0 is ________

Answer»

p0 = 35 – 2(3) – 33 

= 35 – 6 – 9 

= 20

13.

The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is Rs. 120. Find the profit function.

Answer»

MC = C'(x) = 5 + 0.13x 

C(x) = ∫C'(x) dx + k1 

= ∫(5 + 0.13x) dx + k1 

= 5x + 0.13/2 x+ k1 

When quantity produced is zero, fixed cost is 120 

(i.e) When x = 0, C = 120 ⇒ k1 = 120 

Cost function is 5x + 0.065x2 + 120 

Now given MR = R'(x) = 18 

R(x) = ∫18 dx + k1 = 18x + k2 

When x = 0, R = 0 ⇒ k2 = 0 

Revenue = 18x 

Profit P = Total Revenue – Total cost 

= 18x – (5x + 0.065x2 + 120) 

Profit function = 13x – 0.065x2 – 120

14.

The marginal cost of producing x units is C'(x) = 10.6x. The fixed cost is Rs. 50. The selling price per unit is Rs.5. Find (i) total cost function (ii) total revenue function and (iii) profit function.

Answer»

Given C'(x) = 10.6x 

C'(x) = ∫(10.6x) dx + k 

= 10.6 x2/2 + k 

= 5.3x2 + k 

The fixed cost is Rs. 50 

(i.e.) when x = 0, c = 50 ⇒ k = 50 

Hence cost function C = 5.3x2 + 50 

Now, total revenue = number of units sold × price/unit 

Since x be the number of units sold. 

The selling price is Rs.5 per unit. 

Revenue R(x) = 5x 

Profit P = Total revenue – Total cost 

= 5x – (5.3x2 + 50) 

= 5x – 5.3x2 – 50

15.

If the marginal revenue of a firm is constant, then the demand function is ________ (a) MR (b) MC (c) C(x) (d) AC

Answer»

(a) MR 

MR = k (constant) 

Revenue function R = ∫(MR) dx + c1 

= ∫kdx + c1 

= kx + c1 

When R = 0, x = 0, ⇒ c1 = 0 

R = kx

Demand function p = R/x = kx/x = k constant 

⇒ p = MR

16.

The demand and supply functions are given by D(x) = 16 – x2 and S(x) = 2x2 + 4 are under perfect competition, then the equilibrium price x is ________ (a) 2 (b) 3 (c)4 (d) 5

Answer»

(a) 2

D(x) = 16 – x2 , S(x) = 2x2 + 4 

Under equilibriuim, D(x) = S(x) 

⇒ 16 – x2 = 2x2 + 4 

⇒ 3x2 = 12 

⇒ x = ±2. 

Since x cannot be negative x = 2.

17.

The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is _______ (a) 40 (b) 41/2(c) 40/3(d) 41/5

Answer»

(c) 40/3

D(x) = S(x) in equilibrium 

20 – 5x = 4x + 8 

9x = 12 

x = 4/3 = x0 

p0 = 20 – 5(4/3)

= 20 - 20/3

= 40/3

18.

If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is ________(a) P = ∫(MR – MC) dx + k (b) P = ∫(MR + MC) dx + k (c) P = ∫(MR) (MC) dx + k (d) P = ∫(R – C) dx + k

Answer»

(a) P = ∫(MR – MC) dx + k

19.

The marginal revenue and marginal cost functions of a company are MR = 30 – 6x and MC = -24 + 3x where x is the product, then the profit function is _______(a) 9x2 + 54x (b) 9x2 – 54x (c) 54x – 9x2/2(d) 54x – 9x2/2 + k

Answer»

(d) 54x – 9x2/2 + k

Profit = ∫(MR – MC) dx + k 

= ∫(30 – 60) – (-24 + 3x) dx + k

= ∫(54 – 9x) dx + k 

= 54x – 9x2/2 + k

20.

If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to _______ (a) 3 (b) 6 (c) 9 (d) 5

Answer»

(c) 9 

The maximum profit occurs when MR – MC = 0 

⇒ 36x – 3x2 – 81 = 0 

⇒ x2 – 12x + 27 = 0 

⇒ (x – 9)(x – 3) = 0 

⇒ x = 9, 3

Now = dp/dx 36x2 – 3x – 81 ⇒ d2p/dx= 36 – 9x 

At x = 9, d2p/dx= 36 – 81 < 0 

At x = 3, d2p/dx= 36 – 27 > 0 

Therefore profit is maximum when x = 9.

21.

Integrate the following with respect to x.If f'(x) = ex and f(0) = 2, then find f(x).

Answer»

f'(x) = ex 

Integrating both sides of the equation, 

∫ f'(x) dx = ∫ ex dx 

⇒ f(x) = ex + c 

given f(0) = 2 

2 = e0 + c 

⇒ c = 1 

Thus f(x) = e + 1

22.

Integrate the following with respect to x. 2 cos x – 3 sin x + 4 sec2x – 5 cosec2x

Answer»

∫2 cos x – 3 sin x + 4 sec2x – 5 cosec2

= 2 ∫ cos x dx – 3 ∫sin x dx + 4 ∫ sec2x – 5 ∫ cosec2x dx 

= 2 sin x + 3 cos x + 4 tan x + 5 cot x + c

23.

Which of the following is an even function? (a) sin x (b) ex – e-x (c) x cos x (d) cos x

Answer»

The correct answer is : (d) cos x

24.

∫[9/(x - 3) - 1/(x + 1)dx is _____(a) log|x – 3| – log|x + 1| + c (b) log|x – 3| + log|x + 1| + c (c) 9 log|x – 3| – log|x + 1| + c (d) 9 log|x – 3| + log|x + 1| + c

Answer»

(c) 9 log|x – 3| – log|x + 1| + c 

25.

Integrate the following functions w.r.to ‘x’.(i) 1/(p + qx)(ii) cos(4x + 5)

Answer»

(i) ∫1/(p + qx) dx = (1/q) log(p + qx) + c

(ii) ∫cos(4x + 5) dx = sin(4x + 5)/4 

= (1/4) sin(4x + 5) + c 

26.

Integrate the following functions w.r.to ‘x’.(i) cosec2(7 - 11x) (ii) sec(3 + x) tan(3 + x)

Answer»

(i) ∫cosec2(7 - 11x) dx = -cot(7 - 11x)/-11 

= (1/11) cot(7 - 11x) + c

(ii) ∫sec(3 + x) tan(3 + x) dx = sec(3 + x) + c 

27.

Integrate the following functions w.r.to ‘x’.(i) cosec(3 – 2x) cot(3 – 2x)(ii) e3x + 2

Answer»

(i) ∫cosec(3 – 2x) cot(3 – 2x) dx = -cosec(3 - 2x)/-2 

= (1/2) cosec(3 - 2x) + c

(ii) ∫e3x + 2 dx = e3x + 2/3 + c 

28.

Integrate ∫(e2x - 1)/(e2x + x) dx

Answer»

Dividing numerator and denominator by ex, we get

∫(e- e-x)/(e+ e-x)dx

Now d/dx(ex + e-x

= ex - e-x 

= log(ex + e-x) +c

29.

if f(x) us a continous funcation and a &lt; c b, then \(\int\limits_{a}^{c}\) f(x)dx + \(\int\limits_{c}^{b}\)f(x)dx is _____(a) \(\int\limits_{a}^{b}\)f(x)dx − \(\int\limits_{a}^{c}\)f(x)dx(b)\(\int\limits_{a}^{c}\)f(x)dx - \(\int\limits_{a}^{a}\)f(x)dx(c) \(\int\limits_{a}^{b}\)f(x)dx(d) 0 

Answer»

(c) \(\int\limits_{a}^{b}\)f(x)dx

30.

Integrate ∫1/√(x + 1)(x + 5) = ∫1/(x2 + 6x + 5)dx

Answer»

∫1/√((x + 3)- 22)dx 

log|(x + 3) + √(x2 + 6x + 5| + c

31.

if n &gt; 0, then Γ(n) is ........... .(a) \(\int\limits_{0}^{1}\)e-xxn-1dx(b) \(\int\limits_{0}^{1}\)e-xxndx(c)\(\int\limits_{0}^{∞}\)exx-ndx(d) \(\int\limits_{0}^{∞}\)e-xxn - 1dx

Answer»

(d) \(\int\limits_{0}^{∞}\)e-xxn - 1dx

32.

∫2xdx is .......... .(a)2xlog2 + c(b) 2x +c(c) 2x/log2 + c(d) log2/2x + c

Answer»

(c) 2x/log2 + c

33.

Γ(n) is _____ (a) (n – 1)! (b) n! (c) n Γ(n) (d) (n – 1) Γ(n)

Answer»

(a) (n – 1)! 

Γ(n) = Γ(n – 1) + 1 = (n – 1)!

34.

The integral of (√x + 1/√x) equals _____(a) 1/3x1/3 + 2x1/2 + c(b) 2/3x2/3 + 1/2x2 + c(c) 2/3x3/2 + 2x1/2 + c(d) 3/2x3/2 + 1/2x1/2 + c

Answer»

(c) 2/3x3/2 + 2x1/2 + c

35.

If MR = 14 – 6x + 9x2 , find the demand function.

Answer»

MR = 14 – 6x + 9x2 

R = ∫(14 – 6x + 9x2) dx + k 

= 14x – 3x+ 3x3 + k 

Since R = 0, when x = 0, k = 0 

So revenue function R = 14x – 3x2 + 3x3 

Demand function P = R/x = 14 – 3x + 3x2

36.

Integrate the following with respect to ‘x’:(i) (1 + x2)-1(ii) (1 - x2)-1/2

Answer»

(i) ∫(1 + x2)-1 dx = ∫1/(1 + x2) dx = tan-1 x + c

(ii) ∫(1 - x2)-1/2 dx = ∫1/√(1 - x2) dx = sin-1 x + c 

37.

If f'(x) = 4x – 5 and f(2) = 1; find f(x)

Answer»

∫f'(x) dx = ∫(4x – 5) dx 

f(x) = 4x2/2 - 5x + c

f(x) = 2x2 – 5x + c 

But f(2) = 1 

2(2)2 – 5(2) + c = 1 

8 – 10 + c = 1 

c = 3 

Thus, f(x) = 2x2 – 5x + 3

38.

If f'(x) = 12x – 6 and f(1) = 30, f'(1) = 5 find f(x)

Answer»

f'(x) = – 6x + c 

f'(x) = 6x2 – 6x + c 

But f'(1) = 5 

6(1)2 – 6(1) + c = 5 

c = 5 

f” (x) = 6x2 – 6x + 5

∫f” (x) dx = ∫(6x2 - 6x + 5) dx 

f(x) = 6x3/3 - 6x2/2 + 5x + c 

f(x) = 2x3 – 3x2 + 5x + c 

But f(1) = 30 

2(1)3 – 3(1)2 + 5(1) + c = 30 

2 – 3 + 5 + c = 30

c = 26 

f(x) = 2x3 – 3x2 + 5x + 26

39.

Integrate the following with respect to ‘x’:(i) 123(ii) x24/x25(iii) ex

Answer»

(i) ∫123 dx = 123∫dx = 123 x + c

(ii) ∫x24/x25 dx = ∫1/x dx = log|x| + c 

(iii) ∫ex dx = ex + c

40.

Integrate the with respect to x.ex sec x (1 + tan x)

Answer»

Let I = ∫ex (sec x + sec x tan x) dx

Take f(x) = sec x 

f‘ (x) = sec x tan x 

This is of the form of ∫ex[f(x) + f'(x)] dx = ex 

f(x) + c 

= ex sec x + c

41.

Integrate the following with respect to ‘x’:(i) 1/sin2 x (ii) tan x/cos x(iii) cos x/sin2 x (iv) 1/cos2 x 

Answer»

(i) ∫1/sin2 x dx = ∫cosec2 x dx = -cot x + c

(ii) ∫tan x/cos x dx = ∫sec x tan x dx = sec x + c

(iii) ∫cos x/sin2 x dx = ∫cosec x cot x dx = - cosec x + c

(iv) ∫1/cos2 x dx = ∫sec2 x dx = tan x + c

42.

If f'(x) = 9x2 – 6x and f(0) = -3; find f(x)

Answer»

f'(x) = ∫(9x2 – 6x) dx

f(x) = 9x3/3 - 6x2/2 + c

f(x) = 3x3 – 3x2 + c 

But f(0) = -3 

3(0)3 – 3(0)2 + c = -3

c = -3 

Thus, f(x) = 3x3 – 3x2 – 3 

f(x) = 3(x3 – x2 – 1)

43.

If f'(x) = 2x – 7 and f(1) = 0 find f(x)

Answer»

Given f’ (x) = 2x – 7 

⇒ f (x) = ∫(2x - 7) dx

= x2 – 7x + c 

Given f(1) = 0 ⇒ 1 – 7 + c = 0 

⇒ c = 6 

So f(x) = x2 – 7x + 6

44.

Integrate the following with respect to x.(i) √x7(ii) (x10)1/7

Answer»

(i) ∫√x7 dx = ∫(x7)1/2 dx = ∫x7/2 dx = x7/2 + 1/(7/2 + 1) = x9/2/(9/2) = (2/9)x9/2 + c

(ii) ∫(x10)1/7 dx = ∫x10/7 dx = x10/7 + 1/(10/7 + 1) = x17/7/(17/7) = (7/17)x17/7 + c

45.

Given f”(x) = 6x + 6, f'(0) = -5 and f(1) = 6 find f(x)

Answer»

f” (x) = 6x + 6 

⇒ f ‘ (x) = (6x + 6) dx 

= 6x2/2 + 6x + c 

= 3x2 + 6x + c

Given f ‘(0) = -5 ⇒ 0 + c = -5 

⇒ c = -5 

∴ f ‘(x) = 3x2 + 6x – 5 

So f(x) = ∫(3x2 + 6x - 5) dx 

= 3x3/3 + 6x2/2 – 5x + c 

(i.e.,) f(x) = x3 + 3x2 – 5x + c 

Given f(1) = 6 

⇒ 1 + 3 + 5 + c = 6 

⇒ c – 1 = 6 ⇒ c = 7 

So f(x) = x3 + 3x2 – 5x + 7

46.

Integrate the following with respect to x.(i) 1/x5(ii) x-1(iii) 1/x5/2 

Answer»

(i) ∫1/x5 dx = ∫x-5 dx = x-5 + 1/(-5 + 1) = x-4/-4 = -1/4x4 + c

(ii) ∫x-1 dx = ∫1/x dx = log x + c

(iii) ∫1/x-5/2 dx = x-5/2 + 1/(-5/2 + 1) = x-3/2/(-3/2) = -2/3x3/2 + c 

47.

Integrate the following functions w.r.to ‘x’.(i) e3x - 6 (ii) e8 - 7x (iii) 1/(6 - 4x)

Answer»

(i) ∫e3x - 6 dx = (1/3)e3x - 6 + c

(ii) ∫e8 - 7x dx = (-1/7)e8 - 7x + c

(iii) ∫1/(6 - 4x) dx = (-1/4) log (6 - 4x) + c

48.

Integrate the following functions w.r.to ‘x’.(i) 1/(√(1 - (4x)2)(ii) 1/√(1 - 81x2)(iii) 1/(1 + 36x2)

Answer»

(i) ∫1/(√(1 - (4x)2) dx = (1/4) sin-1 4x + c

(ii) ∫1/√(1 - 81x2) dx = ∫1/√(1 - (9x)2) dx = (1/9) sin-1 9x + c

(iii) ∫1/(1 + 36x2) dx = ∫1/(1 + (6x)2) dx = (1/6) tan-1 6x + c 

49.

Integrate the following functions w.r.to ‘x’.(i) sin 3x (ii) cos (5 – 11x) (iii) cosec2 (5x – 7)

Answer»

(i) ∫sin 3x dx = (-1/3) cos 3x + c

(ii) ∫cos (5 – 11x) dx = (-1/11) sin (5 - 11x) + c

(iii) ∫cosec2 (5x – 7) dx = (-1/5) cot (5x - 7) + c

50.

Integrate the following functions w.r.to ‘x’.(i) sec2 x/5 (ii) cosec (5x + 3) cot (5x + 3) (iii) sec (2 – 15x) tan (2 – 15x)

Answer»

(i) ∫sec2 x/5 dx = 5 tan x/5 + c

(ii) ∫cosec (5x + 3) cot (5x + 3) dx = -1/5 cosec(5x + 3) + c

(iii) ∫sec (2 – 15x) tan (2 – 15x) dx = sec(2 - 15x)/-15 + c = (-1/15)sec(2 - 15x) + c