

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
Find the value of the integrates given below :∫(sec2x + cosec2x)dx |
Answer» ∫(sec2x + cosec2x)dx = ∫sec2xdx + ∫cosec2xdx = tanx - cotx + c |
|
2. |
Find the value of the integrates given below :∫sec x (sec x + tan x) dx |
Answer» ∫sec x (sec x + tan x) dx = ∫sec2 x dx + ∫sec x tan x dx = tan x + sec x + C |
|
3. |
Find the value of the integrates given below :∫ logx x dx |
Answer» ∫ logx x dx = \(\int\frac{logx}{log_ex}dx\) = ∫1dx = x + c |
|
4. |
Find the value of the integrates given below :∫ cot x (tan x – cosec x) dx |
Answer» ∫ cot x (tan x – cosec x) dx = ∫ cot x tan x dx – ∫ cot x cosec x dx = ∫ 1 dx – ∫ cosec x cot x dx = x + cosec x + C |
|
5. |
Find the value of the integrates given below :∫ (tan2 x – cot2 x) dx |
Answer» ∫ (tan2 x – cot2 x) dx = ∫ (sec2 x -1 – cosec2 x +1) dx = ∫ sec2 x dx – ∫ cosec2 x dx = tan x + cot x + C |
|
6. |
Find the value of the integrates given below :∫ cot2 x dx |
Answer» ∫ (cosec2 x – 1) dx = ∫ cosec2 x dx – ∫dx = – cot x – x + C |
|
7. |
Find the value of the integrates given below :∫(5cosx - 3sinx + 2/cos2x)dx |
Answer» ∫(5cosx - 3sinx + 2/cos2x)dx = 5∫cosxdx - 3∫sinxdx + 2∫sec2xdx = 5sinx - 3(-cosx) + 2tanx + c = 5sinx + 3cosx + 2tanx + c |
|
8. |
`int_(0)^(pi//4) cos 0. " cosec"^(2) 0 do` |
Answer» Correct Answer - `(2-sqrt(2))` | |
9. |
`int_(0)^(pi//2) (dx)/(1+2 cos x)` |
Answer» Correct Answer - `(1)/(sqrt(3)) log (2+sqrt(3))` | |
10. |
`int_(0)^(pi//2) x sin cos x dx=?`A. `(pi)/(4)`B. `(pi)/(8)`C. `(pi)/(12)`D. |
Answer» Correct Answer - C | |
11. |
`int_(0)^(pi) x sin x. cos^(2) x dx` |
Answer» Correct Answer - `(pi)/(3)` | |
12. |
`int_(0)^(pi//2) x sin x cos x dx` |
Answer» Correct Answer - `(pi)/(8)` | |
13. |
Evaluate the following integral: `int_1^3(cos(logx))/x dx` |
Answer» Correct Answer - ` sin (log 3)` | |
14. |
`int_(0)^(pi//4) sqrt(cot x dx) =?`A. `(Pi sqrt(2))/(4)+(1)/(sqrt(2)) log (sqrt(2)-1)`B. `(-pisqrt(2))/(4)-(1)/(sqrt(2)) log (sqrt(2)-1)`C. `(pisqrt(2))/(4) -(1)/(sqrt(2))log (sqrt(2)-1)`D. |
Answer» Correct Answer - D | |
15. |
`int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?`A. `(pi sqrt(3))/(12)+(1)/(2)`B. `(pisqrt(3))/(12)-(1)/(2)`C. `(pisqrt(3))/(12) -(1)/(2)`D. |
Answer» Correct Answer - A | |
16. |
`int_(0)^(1) sqrt((1-x)/(1+x)) dx=?`A. `(pi)/(2)+1`B. `(pi)/(2) -1`C. None of theseD. |
Answer» Correct Answer - C | |
17. |
`int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?`A. `sqrt(2)-1`B. `sqrt(2)`C. `-sqrt(2)`D. |
Answer» Correct Answer - B | |
18. |
`int_(0)^(1) x sqrt((1-x^(2))/(1+x^(2)))dx` |
Answer» Correct Answer - `((pi)/(4)-(1)/(2))` | |
19. |
`intsqrt((x+1)/(x-1))dx` |
Answer» Correct Answer - `sin^(-1) x-sqrt(1-x^(2)) +c` | |
20. |
Evaluate `int(1)/(1+sinx)dx`. |
Answer» Correct Answer - `sqrt(2) log |tan ((pi)/(8)+(x)/(4))|+c` | |
21. |
`(i) (log x. sin[1+(log x)^(2)])/(x) dx` `(ii) int(dx)/(x(1+log)^(n))` |
Answer» Correct Answer - `(i) -(1)/(2) cos [1+(log x)^(2)]+c " "(ii) (1)/(-n+1) (1+log x)^(-n+1) +c` | |
22. |
`int1/(x^2(x^4+1)^(3/4))dx` |
Answer» Correct Answer - `-(1)/(x) (x^(4) +1)^(1//4) +c` | |
23. |
`intsqrt(1+sin 2x) dx` |
Answer» Correct Answer - `sin x-cos x+c` | |
24. |
`int(x^(2) +3)/(x^(2)+1)dx` |
Answer» Correct Answer - `x+2 tan^(-1) x+c` | |
25. |
`int" cos"^(3)(3x +5) dx` |
Answer» Correct Answer - `(1)/(3) sin (3x +5) -(1)/(9) sin^(3) (3x+5) +c` | |
26. |
`int(2x^(3))/((x^(2)+1)^(2))dx` |
Answer» Correct Answer - `log (x^(2)+1) +(1)/(x^(2) +1)+c` first write 2x^3 as 2x.x^2 then derivation of x^2 is 2x which is in numerator now put x^2+1 that is denominator eaualt to t then differentiate w.r.t t then solve ques |
|
27. |
Evaluate: `int1/(sin(x-a)sin(x-b)) dx` |
Answer» Correct Answer - `(1)/(sin (a-b)) log |(sin (x-a))/(sin(x-b))|+c` | |
28. |
Let `f(x)=(sin^(2)pix)/(1+pi^(x)).` Then, `int[f(x)+f(-x)]dx` is equal to |
Answer» Correct Answer - B (b) `f(x)+f(-x)=(sin^(2)pix)/(1+pi^(x))+(sin^(2)(-pix))/(1+pi^(-x))` `=(sin^(2)pix)/(1+pi^(x))+((sin^(2)pix)pi^(x))/(pi^(x)+1)` `=sin^(2)pix=(1-cos 2pix)/(2)` `therefore int[f(x)+f(-x)]dx=int[(1-cos 2pix)/(2)]dx` `=(1)/(2)xx-(sin 2pix)/(4pi)+C` |
|
29. |
`int(x+1)(x+2)^7(x+3)dx` is equal toA. `((x+2)^(10))/(10)-((x+2)^(8))+C`B. `((x+1)^(2))/(2)-((x+2)^(8))/(8)-((x+3)^(2))/(2)+C`C. `((x+2)^(10))/(10)+C`D. `((x+1)^(2))/(2)+((x+2)^(8))/(8)+((x+3)^(2))/(2)+C` |
Answer» Correct Answer - A (a) `(x+1)(x+3)=(x+2-1)(x+2-1)` `=(x+1)^(2)-1` `therefore int(x+1)(x+2)^(7)(x+3)dx=int{(x+2)^(9)-(x+2)^(7)}dx=((x+2)^(10))/(10)-((x+2)^(8))/(8)+C` |
|
30. |
` int(1)/(5+4 cos x)dx` |
Answer» Correct Answer - `(2)/(3) tan^(-1) .((1)/(3) tan. (x)/(2))+c` | |
31. |
`(i)intsec^(7) x. sin x dx" "(ii) int(1)/(sinx. cos^(2) x)dx` |
Answer» Correct Answer - `(i) (1)/(6) sec^(6) x+c " "(ii) sec x+ log | " cosec " x- cot x |+c` | |
32. |
`int(1)/((asin x+b cos x)^(2))dx` |
Answer» Correct Answer - `(-1)/(a(a tan x+b))+c` | |
33. |
The value of `int(x^(2)+1)/(x^(4)-x^(2)+1)dx` isA. `tan^(-1)(2x^(2)-1)+C`B. `tan^(-1)(x^(2)+1)/(x)+C`C. `sin^(-1)(x-(1)/(x))+C`D. `tan^(-1)((x^(2)-1)/(x))+C` |
Answer» Correct Answer - D Let `l=int(x^(2)+1)/(x^(4)-x^(2)+1)dx=int(1+(1)/(x^(2)))/(x^(2)+(1)/(x^(2))-1)dx` `l=((1+(1)/(x^(2))))/((x-(1)/(x))^(2)+1)dx` `"Put "x-(1)/(x)=t rArr (1+(1)/(x^(2)))dx=dt` `therefore" "l=int(dt)/(t^(2)+1)tan^(-1)t+C = tan^(-1)(x-(1)/(x))+C` `=tan^(-1)((x^(2)-1)/(x))+C` |
|
34. |
Evaluate: (i) `int1/(x^2)cos^2(1/x) dx`(ii) `intsec^4xtanx dx` |
Answer» Correct Answer - `(1)/(4) sec^(4) x+c` | |
35. |
`int" cos"^(4) " 2x dx "` |
Answer» Correct Answer - `(3x)/(8) +(1)/(8) sin 4x+ +(1)/(64) sin 8x +c` | |
36. |
`int(1)/(sqrt(x^(2) -9))dx` |
Answer» Correct Answer - `log | x+ sqrt(x^(2) -9) "|"+c` | |
37. |
If `(d(f(x))/(dx)=(1)/(1+x^(2)) `then `(d)/(dx){f(x^(3))} `isA. `(3x)/(1+x^(3))`B. `(3x^(2))/(1+x^(6))`C. `(-6x^(5))/((1+x^(6))^(2))`D. `(-6x^(5))/(1+x^(6))` |
Answer» Correct Answer - B Given, `(d)/(dx){f(x)}=(1)/(1+x^(2))` On integrating both sides, we get `f(x)=tan^(-1)x` `therefore" "(d)/(dx)f(x^(3))=(d)/(dx)(tan^(-1)x^(3))` `=(1)/(1+(x^(3))^(2)).3x^(2)=(3x^(2))/(1+x^(6))` |
|
38. |
`int ((x+2)/(x+4))^2 e^x dx` is equal toA. `e^(x)((x)/(x+4))+C`B. `e^(x)((x+2)/(x+4))+C`C. `e^(x)((x-2)/(x+4))+C`D. `((2xe^(x))/(x+4))+C` |
Answer» Correct Answer - A Let `l=int((x+2)/(x+4))^(2)e^(x)dx=inte^(x)[(x^(2)+4+4x)/((x+4)^(2))]dx` `rArr" "l=int e^(x)[(x(x+4))/((x+4)^(2))+(4)/((x+4)^(2))]dx` `rArr" "l=int (e^(x)x)/(x+4)dx+int(4e^(x))/((x+4)^(2))dx` On using integration by parts, we get `rArr" "l=e^(x)((x)/(x+4))-int(4e^(x))/((x+4)^(2))dx+int(4e^(x))/((x+4)^(2))dx` `rArr" "l=(xe^(x))/((x+4))+C` |
|
39. |
`int(1)/(2+sin^(2) x)dx` |
Answer» Correct Answer - `(1)/(sqrt(6))tan^(-1) ((sqrt(3) tanx)/(sqrt(2)))+c` | |
40. |
`int(1)/(4x^(2) +9) dx` |
Answer» Correct Answer - `(1)/(6) tan^(-1) ((2x)/(3))+c` | |
41. |
`int(2x-1)/(sqrt(x^(2)-x-1))dx` |
Answer» Correct Answer - `2sqrt(x^(2) -x-1)+c` | |
42. |
`int(dx)/(cos x-sinx)` is equal toA. `(1)/(sqrt2)log|tan((x)/(2)-(pi)/(8))|+C`B. `(1)/(sqrt2)log|cot((x)/(2))|+C`C. `(1)/(sqrt2)log|tan((x)/(2)-(3pi)/(8))|+C`D. `(1)/(sqrt2)log|tan((x)/(2)+(3pi)/(8))|+C` |
Answer» Correct Answer - D `l=int(dx)/(cosx-sinx)` `=(1)/(sqrt2)int(dx)/(((1)/(sqrt2)cosx-(1)/(sqrt2)sinx))` `=(1)/(sqrt2)int(dx)/(cos(x+(pi)/(4)))` `=(1)/(sqrt2)intsec(x+(pi)/(4))dx` `=(1)/(sqrt2)log|tan((pi)/(4)+(x)/(2)+(pi)/(8))|+C` `=(1)/(sqrt2)log|tan((x)/(2)+(3pi)/(8))|+C` |
|
43. |
`int(x^2dx)/(4+x^2)` |
Answer» Correct Answer - `x-2 tan^(-1) .(x)/(2)+c` | |
44. |
`(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx` |
Answer» Correct Answer - `(i) -(1)/(14) cos 7x +(1)/(7) cos7x +(1)/(6) cos 3x +c " "(ii) (2)/(3) sin 3x +2sin x+c` | |
45. |
`int(x^(2) +1)/((x+1))dx` |
Answer» Correct Answer - `x-2 log 9(x+1) -(2)/(x+1)+c` | |
46. |
`int cos 2x . cos 4x . cos 6x dx` |
Answer» Correct Answer - `(x)/(4)+(1)/(16) sin 4 x+(1)/(32) sin 8x +(1)/(48) sin12x +c` | |
47. |
`int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx` is equal toA. `x+C`B. `(3)/(2)sin2x+C`C. `-(3)/(2)cos 2x+C`D. `(1)/(3)sin 3x -cos 3x+C` |
Answer» Correct Answer - A Let `l=int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx` `=int{(sin^(2)x)^(3)+(cos^(2)x)^(3)+3sin^(2)x cos^(2)x}dx` `=int[{:((sin^(2)x+cos^(2)x)"("sin^(4)x+cos^(4)x),(-sin^(2)xcos^(2)x")"+3sin^(2)x cos^(2)x):}]` `=int[{:((sin^(2)x+cos^(2)x)^(2)-3sin^(2)x cos^(2)x),(" "+3sin^(2)xcos^(2)x):}]` `=int1dx=x+C` |
|
48. |
`int(1)/(sqrt(5-.(x^(2))/(4)))dx` |
Answer» Correct Answer - `2sin^(-1) ((x)/(2sqrt(5)))+c` | |
49. |
`int sin^(2//3) x cos^(3) x dx` |
Answer» Correct Answer - `(3)/(5)(sinx)^(5//3)-(3)/(11)(sinx)^(11//3) +c` | |
50. |
`intsec^(4) x dx` |
Answer» Correct Answer - `tan x+(1)/(3) tan^(3) x+c` | |