InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
If `tan theta = (sin alpha - cos alpha) /(sin alpha + cos alpha)`, then `sin alpha+cos alpha` is |
|
Answer» `tan theta = ( sin alpha/cos alpha - 1)/(sin alpha/cos alpha + 1)` `tan theta = ( tan alpha - 1)/(tan alpha + 1)` `tan theta = ( tan alpha - tan (pi/4))/( 1 + tan alpha* tan(pi/4))` `tan theta = tan(alpha - pi/4)` `theta = alpha - pi/4` `alpha = theta + pi/4` now,`sin(theta+ pi/4) + cos(theta + pi/4)` `= sin theta 1/sqrt2 + cos theta 1/sqrt2 + 1/sqrt2 cos theta - 1/sqrt2 sin theta` `= 2*1/sqrt2 cos theta` `= sqrt2 cos theta` option 2 is correct |
|
| 52. |
The minimum value of `cos^2 theta+ sec^2 theta` is |
|
Answer» We know, arithmatic mean of two terms is always greater than or equal to their geometric mean. `:. 1/2(cos^2theta+sec^2theta) ge (cos^2thetasec^2theta)^(1/2)` `=> (cos^2theta+sec^2theta) ge 2(cos^2theta*1/cos^2theta)^(1/2)` `=> (cos^2theta+sec^2theta) ge 2` So, minimum value of `cos^2theta+sec^2theta` is `2`. |
|
| 53. |
Prove the following identity, where the angles involved are acute angles for which the expressions are defined.(x) `((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A` |
|
Answer» Right hand side =`((1+tan^2A)/(1+cot^2A))` =`((1+tan^2A)/((tan^2A+1)/tan^2A))` =`tan^2A` Left hand side =`((1-tan^2A)/(1-cot^2A))` =`((1-tan^2A)/((tan^2A-1)/tan^2A))` =`tan^2A` |
|
| 54. |
If tanA=ntanB and sinA=msinB, prove that `cos^2A=[m^2-1]/[n^2-1]` |
|
Answer» `tanA = ntanB=> n = tanA/tanB` `sinA = msinB => m = sinA/sinB` `R.H.S. = (m^2-1)/(n^2-1) = (sin^2A/sin^2B-1)/(tan^2A/tan^2B-1)` `=((sin^2A-sin^2B)/sin^2B)/((tan^2A-tan^2B)/tan^2B)` `=((sin^2A-sin^2B)/sin^2B)/((tan^2A-tan^2B)/(sin^2B/cos^2B))` `=(sin^2A-sin^2B)/(cos^2B(tan^2A-tan^2B))` `=(1-cos^2A-(1-cos^2B))/(cos^2B(sec^2A-1-(sec^2B-1)))` `=(cos^2B-cos^2A)/(cos^2B(sec^2A-sec^2B))` `=(cos^2B-cos^2A)/(cos^2B(1/cos^2A-1/cos^2B)` `=(cos^2Acos^2B(cos^2B-cos^2A))/(cos^2B(cos^2B-cos^2A)` `=cos^2A = L.H.S.` |
|
| 55. |
If `cosectheta + cottheta=p`, then prove that the `cos theta=(p^2-1)/(p^2+1)` |
|
Answer» Given, `cosectheta + cottheta=p` `rArr 1/(sintheta)+ (costheta)/(sintheta)=p` `[therefore cosectheta=1/(sintheta)` and `cottheta=(costheta)/(sintheta)]` `rArr (1+costheta)/(sintheta)=p/1` `rArr (1+costheta)^(2)/(sin^(2)theta)=p^(2)/1` [take square on both sides] `rArr (1+ cos^(2)theta + 2 cos theta)/(sin^(2)theta)=p^(2)/1` Using componendo and dividendo rule, we get `((1+cos^(theta)+2costheta)-sin^(2)theta)/((1+cos^(2)theta+2costheta)+sin^(2)theta)= (p^(2)-1)/(p^(2)+1)` `rArr (1+cos^(2)theta + 2costheta-(1-cos^(2)theta))/(1+2costheta+(cos^(2)theta+sin^(2)theta))=(p^(2)-1)/(p^(2)+1)` `[therefore sin^(2)theta + cos^(2)theta=1]` `rArr (2cos^(2)theta + 2costheta)/(2+2costheta) = (p^(2)-1)/(p^(2)+1)` `rArr (2costheta(costheta+1))/(2(costheta+1))=(p^(2)-1)/(p^(2)+1)` `therefore costheta=(p^(2)-1)/(p^(2)+1)` Hence proved. |
|
| 56. |
State whether the following are true or false. Justify your answer. (i) The value of tan A always less than 1.(ii) `sec A=(12)/5`for some value of angle A(iii) cos A is the abbreviation used for the cosecant of angle A.(iv) cot A is the product of cot and A(v)`sin theta = 4/3` for some angle `theta` |
|
Answer» 1) False, the value of tan A can be greater than 1. 2)True, 3)True, 4)False,Cot A is a tangent of A. 5)False,because Sin `theta` lies between-1 to 1. |
|
| 57. |
In a right triangle ABC right-angled at B. if `t a n A=1`, then verify that `2sinA cos A=1.` |
|
Answer» `tanA=(BC)/(AB)` `1=(BC)/(AB)` `BC=AB` `AC=sqrt(AB^2+BC^2)` `=ABsqrt2` `=sqrt3BC` `SinA=(BC)/(AC)=(BC)/(sqrt2BC)=1/sqrt2 ``CosA=(AB)/(AC)=(AB)/(sqrt2BC)=1/sqrt2` `2CosASinA=2*1/sqrt2*1/sqrt2=1` |
|
| 58. |
In `DeltaP Q R ,`right-angled at Q (see figure), `P Q = 3 c m a n d P R = 6 c m`. Determine `/_Q P R`and `/_P R Q` |
|
Answer» If we create a right angle triangle `Delta PQR` with given details, then, `sinR = PQ/PR = 3/6 = 1/2 =sin30^@=> R =30^@` We know, `/_P+/_Q+/_R = 180^@` `/_P+90+30 = 180=>/_P = 180-120=60^@` So,`/_QPR = 60^@ and /_PRQ = 30^@` |
|