Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

5251.

Cf value

Answer» I think
It means calorific value
5252.

1+sin ×n

Answer»
5253.

A number x is chosen from these number -5,-4,-3,-2,-1,0,1,2,3,4,5 what is the probability of [x]

Answer» 9/11
??
9/11
5254.

S.I 500 time 2 year rate 5% p=5000

Answer»
5255.

If cosA=√3/2 and tanB=1/√3.find the value of sin(A+B)

Answer» ??
Root 3/2
√3/2
5256.

How to attempt the question paper so that all questions would be answered

Answer» Don\'t read read paper because it may disturb your mind of don\'t know it so attempt first if u don\'t know about it move to next.. this way can get best of your preparation
Don \'t be so tensed Always do paper with cool mind but don\'t take it lightly..and please don\'t leave any question attempt all... try to watch clock at every interval of time and set in your mind that i can do this ques. in 5min.or even more ..step marking will be there therefore attempt all and if u will not able to solve any quest. Or u think that it is wrong then please do not cut it becaude there is step marking for every step ....fast your speed of writing and try to think fast but currectly and then write as u think in this way u can complete whole paper ..or u canDivide the time by section of paper.Hope it will help u.((## I do same)))##All the best.
First you have to solve those questions which you are confident that you are able to do. After that you have to divide your time according to the number of questions and how much marks they carry.
If your mind is concentrate then you is able to attempt all questions
5257.

I want the prove of trigonometric ratios

Answer»
5258.

(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0

Answer» Given,(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0{tex}\\Rightarrow x ^ { 2 } - a x - b x + a b + x ^ { 2 } - b x - c x + b c + x ^ { 2 } - c x - a x+ a c = 0{/tex}{tex}\\Rightarrow 3 x ^ { 2 } - 2 a x - 2 b x - 2 c x + a b + b c + c a = 0{/tex}For equal roots\xa0{tex}B ^ { 2 } - 4 A C = 0{/tex}or,\xa0{tex}\\{ - 2 ( a + b + c ) \\} ^ { 2 } = 4 \\times 3 ( a b + b c + c a ){/tex}or,\xa0{tex}4 ( a + b + c ) ^ { 2 } - 12 ( a b + b c + c a ) = 0{/tex}or,\xa0{tex}a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 a b + 2 b c + 2 a c - 3 a b - 3 b c - 3 a c = 0{/tex}or,\xa0{tex}\\frac { 1 } { 2 } \\left[ 2 a ^ { 2 } + 2 b ^ { 2 } + 2 c ^ { 2 } - 2 a b - 2 a c - 2 b c \\right] = 0{/tex}or,\xa0{tex}\\frac { 1 } { 2 } \\left[ \\left( a ^ { 2 } + b ^ { 2 } - 2 a b \\right) + \\left( b ^ { 2 } + c ^ { 2 } - 2 b c \\right) + \\left( c ^ { 2 } + a ^ { 2 } - 2 a c \\right) \\right] = 0{/tex}or,\xa0{tex}\\frac { 1 } { 2 } \\left[ \\left( a ^ { 2 } + b ^ { 2 } - 2 a b \\right) + \\left( b ^ { 2 } + c ^ { 2 } - 2 b c \\right) + \\left( c ^ { 2 } + a ^ { 2 } - 2 a c \\right) \\right] = 0{/tex}or,\xa0{tex}( a - b ) ^ { 2 } + ( b - c ) ^ { 2 } + ( c - a ) ^ { 2 } = 0 \\text { if } a \\neq b \\neq c{/tex}Since\xa0{tex}( a - b ) ^ { 2 } > 0 , ( b - c ) ^ { 2 } > 0 ( c - a ) ^ { 2 } > 0{/tex}\xa0Hence,\xa0{tex}( a - b ) ^ { 2 } = 0 \\Rightarrow a = b{/tex}{tex}( a - c ) ^ { 2 } = 0 \\Rightarrow b = c{/tex}{tex}( c - a ) ^ { 2 } = 0 \\Rightarrow c = a{/tex}{tex}\\therefore a = b = c{/tex}\xa0Hence Proved.
5259.

045 code qestion paper

Answer»
5260.

If the ratio of the first n terms of two AP is (7n+1):(4n+27),find the ratio of their mth term

Answer» Let a, and A be the first terms and d and D be the common difference of two A.PsThen, according to the question,{tex}\\frac { S _ { n } } { S _ { n } ^ { \\prime } } = \\frac { \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \\frac { n } { 2 } [ 2 A + ( n - 1 ) D ] } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,\xa0{tex}\\frac { 2 a + ( n - 1 ) d } { 2 A + ( n - 1 ) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,{tex}\\frac { a + \\left( \\frac { n - 1 } { 2 } \\right) d } { A + \\left( \\frac { n - 1 } { 2 } \\right) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}Putting,\xa0{tex}\\frac { n - 1 } { 2 } = m - 1{/tex}{tex}n-1 = 2m - 2{/tex}{tex}n= 2m - 2 + 1{/tex}or, {tex}n = 2m - 1{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 7 ( 2 m - 1 ) + 1 } { 4 ( 2 m - 1 ) + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 7 + 1 } { 8 m - 4 + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}Hence,\xa0{tex}\\frac { a _ { m } } { A _ { m } } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}
5261.

Please do study friends our board exams coming very soon you also study in mobile but few hour

Answer» ?
Ok
Yeah
Right
5262.

In ∆ABC, DE||BC,find the value of ×.If, AD=× DB=×+1 EC=×+3 AE=×+5

Answer» X=3
×=3
5263.

Tell quadratic formula

Answer» x=(-b±√b²-4ac)/2a
-b+roots/2a
- b+-root d / 2 a
D = bsquare - 4ac
5264.

5×10+20÷20+10

Answer» (50*10)+(20/20)+(10)50+1+10=51+10=61So,Ans=61
61
61
5265.

(a+b)cube=

Answer» a^3+b^3+3abb+3aabAs it is easy to learn
acube+ bcube+3asquareb+3absquare
a³+b³+3ab(a+b)
5266.

Find the values of y for which the distance between the points p(2,-3) and q(10,y) is 10 units

Answer» Is y is (-1)
5267.

The perimeter of rectangle is 60cm and its hypotenuse is 25 cm .find area of triangle.

Answer» Given: a + b + 25 = 60\xa0{tex}\\Rightarrow{/tex}\xa0a + b = 35a2 + b2 = 252ab\xa0{tex}=\\frac{1}{2}\\left[(a+b)^{2}-\\left(a^{2}+b^{2}\\right)\\right]{/tex}{tex}=\\frac{1}{2}[1225-625]{/tex}{tex}=\\frac{1}{2}[600]{/tex}= 300{tex}\\therefore{/tex}\xa0area of\xa0{tex}\\triangle{/tex}\xa0= 150cm2
5268.

How to find middle term of an ap

Answer» N+1/2
5269.

CosecA+cotA=11/5.then find the cosa

Answer»
5270.

Prove tana/1-cota+cota/1-tana=1+sec a×coseca

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
5271.

2x²+4x+6

Answer»
5272.

How we get oswal solutions of 6-10 sample paper

Answer» Yaha kaise du pdf me dwnld kar loo. Oswallbook.com website se loo link http://www.oswaalbooks.com/download-sample-question-papers.php?id=10.
Www.oswallbookssample.in
From oswaal website it is given
5273.

X cube minus 6 x square plus 11 x minus 6

Answer»
5274.

What is the distance between the points (a cos 45 ,0 )and ( 0,a cos 45)

Answer»
5275.

Prove that 6 is irrational.

Answer» 1 min.... Yha √6 hoga naa...
Same ques in ncert....
Yha prove kre???
5276.

If the circumference of a circle is pie units more than the diameter of circle find the diameter

Answer»
5277.

Find the area of ∆ABCwith A (1,-4) and midpoint of sides through A being (2,-1)and (0,-1).

Answer» Let E be the midpoint of AB.{tex}\\therefore \\quad \\frac { x + 1 } { 2 } = 2{/tex}\xa0or x = 3and\xa0{tex}\\frac { y + ( - 4 ) } { 2 } = - 1{/tex} or, y = 2or, B(3, 2)Let F be the mid-point of AC.Then,{tex}0=\\frac{x_1+1}{2}{/tex}\xa0or\xa0{tex}x_1=-1{/tex}and {tex}\\frac { y _ { 1 } + ( - 4 ) } { 2 }{/tex}\xa0= -1 or, y1\xa0= 2or, C= (-1, 2)Now the co-ordinates are A(1, - 4), B(3,2), C (-1,2)Area of triangle{tex}= \\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}{tex}= \\frac { 1 } { 2 } [ 1 ( 2 - 2 ) + 3 ( 2 + 4 ) - 1 ( - 4 - 2 ) ]{/tex}{tex}= \\frac { 1 } { 2 } [ 0 + 18 + 6 ]{/tex}= 12 sq units.
5278.

If sintheta + 2costheta = 1 the prove that 2sintheta - costheta = 2

Answer»
5279.

What value for cos180°?

Answer» -1
5280.

Who is going to score full marks in maths

Answer» How???
i thin k we all
5281.

Latest cbse news.

Answer» What??
5282.

What is homologous argans

Answer» same structure different function
Having same basic structure performed different function ex.....wings of bat,paw of a cat ??
The organ which r same in appearance and different in function
By mistake clicked maths
5283.

Show that exactly one of the no n,n+2,n+4 is divisible by 3

Answer» Sol :We applied Euclid Division algorithm on n and 3.a = bq +r on putting a = n and b = 3n = 3q +r , 0i.e n = 3q -------- (1),n = 3q +1 --------- (2), n = 3q +2 -----------(3)n = 3q is divisible by 3or n +2 = 3q +1+2 = 3q +3 also divisible by 3or n +4 = 3q + 2 +4 = 3q + 6 is also divisible by 3Hence n, n+2 , n+4 are divisible by 3.
5284.

Prove that the sum of the squares of the sides of a rhombus is equal to the squares of its diagnol

Answer» Given: Let, ABCD is a rhombus and since diagonals of a rhombus bisect each other at\xa0{tex} 90 ^ { \\circ }{/tex}To Prove: {tex} \\therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex}Proof :\xa0{tex}\\therefore {/tex}{tex}A O = O C {/tex}\xa0{tex}\\Rightarrow A O ^ { 2 } = O C ^ { 2 }{/tex}{tex}B O = O D {/tex}\xa0{tex}\\Rightarrow B O ^ { 2 } = O D ^ { 2 }{/tex}and\xa0{tex}\\angle A O B = 90 ^ { \\circ }{/tex}\xa0{tex}\\therefore {/tex}\xa0{tex} A B ^ { 2 } = O A ^ { 2 } + B O ^ { 2 }{/tex}Similarly,\xa0{tex} A D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}{tex}BC ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}{tex}C D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}{tex} \\therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + D A ^ { 2 } = 4 A O ^ { 2 } + 4 D O ^ { 2 }{/tex}\xa0{tex} = ( 2 A O ) ^ { 2 } + ( 2 D O ) ^ { 2 }{/tex}\xa0{tex} = ( 2 x ) ^ { 2 } + ( 2 y ) ^ { 2 }{/tex}\xa0{tex} \\therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex}\xa0Hence proved.
5285.

Preparation of all the subject within 1 month. How?

Answer» 1 month v nahi reh gaya half to pre board mein nikal jayega
OK thanks
Aur kuch
Read all subject per day
5286.

Which is best amongst :Arihant,super20,exam guru and Oswaal. Dont answer"NCERT"

Answer» oswal
Oswaal
All in one
5287.

Which formula we can use to find area of a given segment??

Answer» Only mind
Ha h n iska formula
5288.

Which formula we can use to find area of a give sector?

Answer» (Thita /360)πr²
5289.

Long type

Answer» Long type ageeee?
5290.

Find the coordinates of the centroid of a triangle whose vertices are (0, 6) (8 ,12) and (8, 0)

Answer» ???☠?????
No this is wrong answer
8,9
5291.

Basic proportional theorem

Answer» Example
It there in text book
See in NCERT
5292.

I m confused about centroid of a triangle in coordinate geometry.plzz explain

Answer» The mid point of triangle , at this point all the median\'s of triangle intersect each other
5293.

What is the centroid of triangle

Answer» Median of a triangle
Centroid of a triangle is a point where all medians of triangle intersect
Medium
Point where all 3 media\'s intersects
Oh
5294.

What is the centroid of a triangle called;plzzz explain me.

Answer» X1+x2+x3/2
5295.

If SecA +TanA =p So prove that SinA =p2-1/p2+1

Answer»
5296.

What is the distance between two parallel tangents of a circle radius 14cm

Answer» 28 cm
28 cm
28cm
28cn
5297.

Any type of questions

Answer»
5298.

Find the value of x+y; if 3x-2y=5 and 3y-2x=3

Answer» 3x-2y=5 _13y-2x=3. =-2x+3y=3 _2Use _1 3x-2y=53x=5+2yX=5+2y/3Put the value of x in_2-2x+3y=3-2(5+2y/3)+3y=3-10-4y/3+3y=3 -10-4y+9y/3=3-10+5y=95y=9+10Y=19/5Put the vlue of y in_13x-2(19/5)=5 3x=5+38/53x=25+38/53x=63/5x= 63/5/3x=63/5×1/3x= 21/5
Which is correct answer guys
13/2
Might be
x+y=(-4)
=8
5299.

-0.12 divide the following number

Answer»
5300.

Prove that 3+5

Answer» ❤❤fattu
What we have to prove rational aur irrational