Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6451.

Find the quadratic polynomial which sum and product of zeroes are -4 and 2 respectively

Answer» Let p and q are the zero of polynomial. Then ,A/q p+q =-4 and pq= 2 Now required polynomial can be written as k (x^2-(p+q)x +pq)i.e k (x^2-(-4)X +2)=k (x^2 +4x+2).
Using0=x2 + (a+n) +ab
6452.

Why pi is 22 /7 and not something else

Answer» The value of Punde was found by EuclidHe inscribed a circle inside a regular polygon and and then inscribed a a polygon of same sides inside the same circle.so the circumference of circle was between the values of both polygons.He did this with a polygon of 91 z Drs to find the value
6453.

Hjh

Answer»
6454.

Express all trigonometry ratio in term of sinA

Answer» Let sin A = x/1 Therefore =opposite/hypotenuseBy Pythagoras theorem 3rd side =√1-x*x = √1-x2cos A = √1-x2/1 =√1-sin2Atan A = x/√1-x2 = sinA/√1-sin2ACosec A = 1/sinAsec A = 1/√1-sin2Acot A = √1-sin2A/sinA
6455.

Expr

Answer»
6456.

How many sets of paper are their in board exam of maths and sst.

Answer»
6457.

In a right triangle ABC ,right angle at B ,if tan A=1then verify that 2sinA .cosA=1

Answer» In {tex} \\triangle A B C{/tex},{tex}\\tan A = 1{/tex}{tex}\\Rightarrow \\quad \\frac { B C } { A C } = 1{/tex}{tex}\\Rightarrow {/tex}\xa0BC = x and\xa0AC = xUsing Pythagoras theorem,\xa0{tex}\\Rightarrow A B ^ { 2 } = A C ^ { 2 } + B C ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B ^ { 2 } = x ^ { 2 } + x ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B = \\sqrt { 2 } x{/tex}{tex}\\therefore \\quad \\sin A = \\frac { B C } { A B } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } \\text { and } \\cos A = \\frac { A C } { \\sqrt { 2 } x } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } {/tex}2 sin A cos A\xa0{tex}= 2 \\times \\frac { 1 } { \\sqrt { 2 } } \\times \\frac { 1 } { \\sqrt { 2 } } = 1{/tex}
6458.

If altitudes of triangle is 10 cm ,12 cm, 15 cm, then find the semi perimeter

Answer»
6459.

What is polynomial?

Answer»
6460.

Write the no. Of solution of the following pair of linear equation

Answer»
6461.

I am going to write my maths exam tomorrow so give me a small tips to get

Answer» Start from last question
6462.

2x2+x_4=0

Answer»
6463.

if one of the six trignometric ratio is given find other trignometric ratio sinA =2/5

Answer»
6464.

anderroot 3 ak aprimay sankhya hai

Answer»
6465.

Find the value of people for which the quadratic equation 4x +px+3 has equal roots

Answer» {tex}4x^2\\;+\\;px\\;+\\;3\\;=\\;0{/tex}{tex}a = 4 , b = p{/tex} and {tex}c = 3{/tex}As the equation has equal roots{tex}\\therefore {/tex}\xa0{tex}D = 0{/tex}{tex}D = b ^ { 2 } - 4 a c = 0{/tex}or,\xa0{tex}p ^ { 2 } - 4 \\times 4 \\times 3 = 0{/tex}or,\xa0{tex}p ^ { 2 } - 48 = 0{/tex}or,\xa0{tex}p ^ { 2 } = 48{/tex}or,\xa0{tex}p = \\pm 4 \\sqrt { 3 }{/tex}
6466.

(sin²Acos²B-cos²Asin²B) =(sin²A-sin²B)

Answer» [sin²A(1-sin²B)-(1-sin²A)sin²B][sin²A-sin²Asin²B-(sin²B-sin²Asin²B)](sin²A-sin²Asin²B-sin²B+sin²Asin²B)(sin²A-sin²B)
6467.

Find the sum of all integers from 50 to 500 which I\'d divisible by 10

Answer» a1=50d=10an=500500 = a + (n -1)d500 = 50 + 10n - 10500 - 40 = 10n460= 10nn = 46S46 = 46/2 {2x50 + (45)10 = 23(100 + 450) = 23x550 = 12650
6468.

My question is mathematics in hindi

Answer» गणित
6469.

How to find root

Answer»
6470.

Exercise10c. Rs aggarwal. Q.no 6,7,and,8

Answer»
6471.

What is meant by diagonal=under root 2 side

Answer» this is diagonal for square\xa0
6472.

Draw a traingle whereA,BandC (0,2)(2,-2)and(-2,2)respectively,,

Answer»
6473.

Tan A -sin A/cos A then prove cos A - cos A

Answer» TanA- sinA/cosA =cosA - cosaL.H.STanA - tanA =0Now , in R.H.SCosA- cosA =0Hence proved, L.H.S = R.H.S
6474.

What is successive division method?

Answer»
6475.

Prove that √2-√3 is an irrational number

Answer»
6476.

If √x+y=7 and √x+y=11then find the value of x and y?

Answer» X=4,Y=3
6477.

Converse of bpt theorem

Answer»
6478.

1/x-1/x-2=3

Answer»
6479.

(2a)ka square kya hota hai

Answer» 4a^2
4
6480.

(2,-5),(-6,5)

Answer»
6481.

Find the area of triangle whose coordinates are (0,2),(9,0)?

Answer» 9 unit2
6482.

What is maximum value for 1/sec

Answer» 1/1/cos Theta=cos theta =0
6483.

A+b ka whole square kya hota ha

Answer» a ka square + b ka square + 2ab
a.a+2ab+b.b. Its so easy and simple
6484.

2x+3y=9 ,3x+2y=12

Answer» (2x+3y=9 ) x 3 or 6x+9y=27 ..................... i(3x+2y=12) x 2 or 6x+4y=24........................ iii - ii- y = + 3y = - 3from i2x+3y=92x - 9=92x=18x=9x=9 , y = - 3check your answer 2x+3y\xa0, 2x9 -9 , 18 - 9 = 9
Y=3/5 ,x=18/5
6485.

Find LCM of 92 and 510. Also find HCF by using LCM

Answer» 92=46x2=23x2x2510=255x2=51x5x2=17x3x5x2 or = 17x5x3x2LCM = 23x2x17x5x3= 46x255=11730using formula LCM X HCF = Product of two numbers11730 x HCF = 92 x 510HCF = 92 X 510 / 11730=4HCF = 4
6486.

Find the rational number between

Answer»
6487.

How to find sin

Answer» sine is the main function used in trigonometry and is based on right Ld trianglelet us consider a right Ld triangle ABC rt Ld at Bif side opposite to the angle say LA is called opposite side (BC)side opposite to 90o is called hypotenuse (AC)then sin A = opposite side/hypotenuse sin A\xa0= BC/AC\xa0
6488.

(A+b)^2

Answer» \xa0(A+b)2 = A2+2Ab +b2
A^2+2AB+B^2
6489.

I want to know that in board exam our paper \'s questions will come from NCERT OR RD SHARMA OR both?

Answer» More than half will come from NCERT
Bro read NCERT it is best....and try examples of rs Agarwal
6490.

the graph if y=f(x) is given in figure. what is the number of zeroes of f(x)

Answer»
6491.

If 2,1 are two roots of quadratic equation ax2+bx+c then find the value of a and b

Answer» 2 9
6492.

What is Division Lemma ?

Answer» Euclid lemma
6493.

Prove that the tangents draw at the ends of the diameter of a circle are parallel

Answer»
6494.

Full form of math

Answer» Are u lost......
6495.

What is the marking scheme for different chapters of maths?

Answer»
6496.

If 3cosA+4sinA=5 then find Tan A

Answer»
6497.

Find Ap

Answer»
6498.

Show that one and only one out of q,q+2,q+4 is divisible by 3 where q is a positive integers

Answer»
6499.

Evaluate 2cos67°/sin23°-tan40°\\cot50°-cos0°

Answer» {tex}\\begin{array}{l}=\\frac{2\\cos67^o}{\\sin23^o}-\\frac{\\tan{\\displaystyle{\\displaystyle40}^{{}^o}}}{cot50^o}-\\cos0^o\\\\=\\frac{2\\sin(90-67)}{\\sin{\\displaystyle23}}-\\frac{cot(90-40}{cot50}-1\\\\=\\frac{2\\sin23}{\\sin{\\displaystyle23}}-\\frac{cot50}{cot50}-1\\\\=2-1-1\\\\=2-2\\\\=0\\end{array}{/tex}
6500.

Full form of maths

Answer» Mental attack to a health student