Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 6451. |
Find the quadratic polynomial which sum and product of zeroes are -4 and 2 respectively |
|
Answer» Let p and q are the zero of polynomial. Then ,A/q p+q =-4 and pq= 2 Now required polynomial can be written as k (x^2-(p+q)x +pq)i.e k (x^2-(-4)X +2)=k (x^2 +4x+2). Using0=x2 + (a+n) +ab |
|
| 6452. |
Why pi is 22 /7 and not something else |
| Answer» The value of Punde was found by EuclidHe inscribed a circle inside a regular polygon and and then inscribed a a polygon of same sides inside the same circle.so the circumference of circle was between the values of both polygons.He did this with a polygon of 91 z Drs to find the value | |
| 6453. |
Hjh |
| Answer» | |
| 6454. |
Express all trigonometry ratio in term of sinA |
| Answer» Let sin A = x/1 Therefore =opposite/hypotenuseBy Pythagoras theorem 3rd side =√1-x*x = √1-x2cos A = √1-x2/1 =√1-sin2Atan A = x/√1-x2 = sinA/√1-sin2ACosec A = 1/sinAsec A = 1/√1-sin2Acot A = √1-sin2A/sinA | |
| 6455. |
Expr |
| Answer» | |
| 6456. |
How many sets of paper are their in board exam of maths and sst. |
| Answer» | |
| 6457. |
In a right triangle ABC ,right angle at B ,if tan A=1then verify that 2sinA .cosA=1 |
| Answer» In {tex} \\triangle A B C{/tex},{tex}\\tan A = 1{/tex}{tex}\\Rightarrow \\quad \\frac { B C } { A C } = 1{/tex}{tex}\\Rightarrow {/tex}\xa0BC = x and\xa0AC = xUsing Pythagoras theorem,\xa0{tex}\\Rightarrow A B ^ { 2 } = A C ^ { 2 } + B C ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B ^ { 2 } = x ^ { 2 } + x ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B = \\sqrt { 2 } x{/tex}{tex}\\therefore \\quad \\sin A = \\frac { B C } { A B } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } \\text { and } \\cos A = \\frac { A C } { \\sqrt { 2 } x } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } {/tex}2 sin A cos A\xa0{tex}= 2 \\times \\frac { 1 } { \\sqrt { 2 } } \\times \\frac { 1 } { \\sqrt { 2 } } = 1{/tex} | |
| 6458. |
If altitudes of triangle is 10 cm ,12 cm, 15 cm, then find the semi perimeter |
| Answer» | |
| 6459. |
What is polynomial? |
| Answer» | |
| 6460. |
Write the no. Of solution of the following pair of linear equation |
| Answer» | |
| 6461. |
I am going to write my maths exam tomorrow so give me a small tips to get |
| Answer» Start from last question | |
| 6462. |
2x2+x_4=0 |
| Answer» | |
| 6463. |
if one of the six trignometric ratio is given find other trignometric ratio sinA =2/5 |
| Answer» | |
| 6464. |
anderroot 3 ak aprimay sankhya hai |
| Answer» | |
| 6465. |
Find the value of people for which the quadratic equation 4x +px+3 has equal roots |
| Answer» {tex}4x^2\\;+\\;px\\;+\\;3\\;=\\;0{/tex}{tex}a = 4 , b = p{/tex} and {tex}c = 3{/tex}As the equation has equal roots{tex}\\therefore {/tex}\xa0{tex}D = 0{/tex}{tex}D = b ^ { 2 } - 4 a c = 0{/tex}or,\xa0{tex}p ^ { 2 } - 4 \\times 4 \\times 3 = 0{/tex}or,\xa0{tex}p ^ { 2 } - 48 = 0{/tex}or,\xa0{tex}p ^ { 2 } = 48{/tex}or,\xa0{tex}p = \\pm 4 \\sqrt { 3 }{/tex} | |
| 6466. |
(sin²Acos²B-cos²Asin²B) =(sin²A-sin²B) |
| Answer» [sin²A(1-sin²B)-(1-sin²A)sin²B][sin²A-sin²Asin²B-(sin²B-sin²Asin²B)](sin²A-sin²Asin²B-sin²B+sin²Asin²B)(sin²A-sin²B) | |
| 6467. |
Find the sum of all integers from 50 to 500 which I\'d divisible by 10 |
| Answer» a1=50d=10an=500500 = a + (n -1)d500 = 50 + 10n - 10500 - 40 = 10n460= 10nn = 46S46 = 46/2 {2x50 + (45)10 = 23(100 + 450) = 23x550 = 12650 | |
| 6468. |
My question is mathematics in hindi |
| Answer» गणित | |
| 6469. |
How to find root |
| Answer» | |
| 6470. |
Exercise10c. Rs aggarwal. Q.no 6,7,and,8 |
| Answer» | |
| 6471. |
What is meant by diagonal=under root 2 side |
| Answer» this is diagonal for square\xa0 | |
| 6472. |
Draw a traingle whereA,BandC (0,2)(2,-2)and(-2,2)respectively,, |
| Answer» | |
| 6473. |
Tan A -sin A/cos A then prove cos A - cos A |
| Answer» TanA- sinA/cosA =cosA - cosaL.H.STanA - tanA =0Now , in R.H.SCosA- cosA =0Hence proved, L.H.S = R.H.S | |
| 6474. |
What is successive division method? |
| Answer» | |
| 6475. |
Prove that √2-√3 is an irrational number |
| Answer» | |
| 6476. |
If √x+y=7 and √x+y=11then find the value of x and y? |
| Answer» X=4,Y=3 | |
| 6477. |
Converse of bpt theorem |
| Answer» | |
| 6478. |
1/x-1/x-2=3 |
| Answer» | |
| 6479. |
(2a)ka square kya hota hai |
|
Answer» 4a^2 4 |
|
| 6480. |
(2,-5),(-6,5) |
| Answer» | |
| 6481. |
Find the area of triangle whose coordinates are (0,2),(9,0)? |
| Answer» 9 unit2 | |
| 6482. |
What is maximum value for 1/sec |
| Answer» 1/1/cos Theta=cos theta =0 | |
| 6483. |
A+b ka whole square kya hota ha |
|
Answer» a ka square + b ka square + 2ab a.a+2ab+b.b. Its so easy and simple |
|
| 6484. |
2x+3y=9 ,3x+2y=12 |
|
Answer» (2x+3y=9 ) x 3 or 6x+9y=27 ..................... i(3x+2y=12) x 2 or 6x+4y=24........................ iii - ii- y = + 3y = - 3from i2x+3y=92x - 9=92x=18x=9x=9 , y = - 3check your answer 2x+3y\xa0, 2x9 -9 , 18 - 9 = 9 Y=3/5 ,x=18/5 |
|
| 6485. |
Find LCM of 92 and 510. Also find HCF by using LCM |
| Answer» 92=46x2=23x2x2510=255x2=51x5x2=17x3x5x2 or = 17x5x3x2LCM = 23x2x17x5x3= 46x255=11730using formula LCM X HCF = Product of two numbers11730 x HCF = 92 x 510HCF = 92 X 510 / 11730=4HCF = 4 | |
| 6486. |
Find the rational number between |
| Answer» | |
| 6487. |
How to find sin |
| Answer» sine is the main function used in trigonometry and is based on right Ld trianglelet us consider a right Ld triangle ABC rt Ld at Bif side opposite to the angle say LA is called opposite side (BC)side opposite to 90o is called hypotenuse (AC)then sin A = opposite side/hypotenuse sin A\xa0= BC/AC\xa0 | |
| 6488. |
(A+b)^2 |
|
Answer» \xa0(A+b)2 = A2+2Ab +b2 A^2+2AB+B^2 |
|
| 6489. |
I want to know that in board exam our paper \'s questions will come from NCERT OR RD SHARMA OR both? |
|
Answer» More than half will come from NCERT Bro read NCERT it is best....and try examples of rs Agarwal |
|
| 6490. |
the graph if y=f(x) is given in figure. what is the number of zeroes of f(x) |
| Answer» | |
| 6491. |
If 2,1 are two roots of quadratic equation ax2+bx+c then find the value of a and b |
| Answer» 2 9 | |
| 6492. |
What is Division Lemma ? |
| Answer» Euclid lemma | |
| 6493. |
Prove that the tangents draw at the ends of the diameter of a circle are parallel |
| Answer» | |
| 6494. |
Full form of math |
| Answer» Are u lost...... | |
| 6495. |
What is the marking scheme for different chapters of maths? |
| Answer» | |
| 6496. |
If 3cosA+4sinA=5 then find Tan A |
| Answer» | |
| 6497. |
Find Ap |
| Answer» | |
| 6498. |
Show that one and only one out of q,q+2,q+4 is divisible by 3 where q is a positive integers |
| Answer» | |
| 6499. |
Evaluate 2cos67°/sin23°-tan40°\\cot50°-cos0° |
| Answer» {tex}\\begin{array}{l}=\\frac{2\\cos67^o}{\\sin23^o}-\\frac{\\tan{\\displaystyle{\\displaystyle40}^{{}^o}}}{cot50^o}-\\cos0^o\\\\=\\frac{2\\sin(90-67)}{\\sin{\\displaystyle23}}-\\frac{cot(90-40}{cot50}-1\\\\=\\frac{2\\sin23}{\\sin{\\displaystyle23}}-\\frac{cot50}{cot50}-1\\\\=2-1-1\\\\=2-2\\\\=0\\end{array}{/tex} | |
| 6500. |
Full form of maths |
| Answer» Mental attack to a health student | |