Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 6501. |
What is the area of triangle ? ABC |
| Answer» | |
| 6502. |
How to solve trigonometric questions |
|
Answer» Simply use your brain to learn important formula and use your pen to implement appropriate formula when required. with pen and brain |
|
| 6503. |
What is qudratic formula |
| Answer» D=b^2-4acX=-b+-root d/2a | |
| 6504. |
Prove that the points A(2,4 ),B(2,6) andC(2+√3,5)are the vertices of an equilateral triangle. |
| Answer» Given : A(2, 4), B(2, 6) and C(2 +\xa0{tex}\\sqrt { 3 },{/tex}\xa05){tex}A B = \\sqrt { ( 2 - 2 ) ^ { 2 } + ( 6 - 4 ) ^ { 2 } } = \\sqrt { 0 + 2 ^ { 2 } } = \\sqrt { 4 } = 2\\ units{/tex}{tex}B C = \\sqrt { ( 2 + \\sqrt { 3 } - 2 ) ^ { 2 } + ( 5 - 6 ) ^ { 2 } }{/tex}=\xa0{tex}\\sqrt { ( \\sqrt { 3 } ) ^ { 2 } + ( - 1 ) ^ { 2 } } = \\sqrt { 3 + 1 } = \\sqrt { 4 } = 2\\ units{/tex}{tex}A C = \\sqrt { ( 2 + \\sqrt { 3 } - 2 ) ^ { 2 } + ( 5 - 4 ) ^ { 2 } }{/tex}{tex}= \\sqrt { ( \\sqrt { 3 } ) ^ { 2 } + ( 1 ) ^ { 2 } } = \\sqrt { 3 + 1 } = \\sqrt { 4 } = 2\\ units{/tex}We find that AB = BC = ACHence, the given points are the vertices of an equilateral triangle. | |
| 6505. |
-2xy+3,7xy-5,3xy+8,-xy-1Add hAns:-7xy+5Give me all sulution any body |
| Answer» Phele xy term ek sath liya phir constant term ko aur add kr de but sign change maat krna | |
| 6506. |
if coseca= square root of 10 find other five trigonometric ratios |
| Answer» | |
| 6507. |
What is the weightage for each chapter |
| Answer» | |
| 6508. |
What is fraction |
| Answer» | |
| 6509. |
Show that (2+2) =4 |
| Answer» 1+1-22+2-4 | |
| 6510. |
find the value of cosec30 ,sec60 ,sec45 , geometrically |
| Answer» 1 | |
| 6511. |
Form a quadratic polynomials whose zeros 7+2√2 and 7-2√2 |
| Answer» | |
| 6512. |
Which term of the AP: 121,117,113,............is it\'s first negative term? |
| Answer» Here the given AP is :\xa0121,117,113........a=121 and d=117-121 = -4The general term of an AP is given byan\xa0= a+(n-1)dLet nth term is negative{tex}\\Rightarrow{/tex}\xa0a+(n-1)d<0{tex}\\Rightarrow{/tex}\xa0121+(n-1)(-4)<0{tex} \\Rightarrow {/tex}\xa0121-4n+4<0{tex} \\Rightarrow {/tex}\xa0-4n+125 < 0{tex} \\Rightarrow {/tex}\xa0-4n< -125Hence, 4n>125{tex} \\Rightarrow {/tex}\xa0n >{tex}\\frac{{125}}{4}{/tex}So, n > 31.25Hence, the 32nd term is first negative term. | |
| 6513. |
Cot + cos |
| Answer» | |
| 6514. |
Who invent no 1? |
|
Answer» As belevied about the digits from 1 to 9 they were invented in Arab The Gupta invented number 1-9 |
|
| 6515. |
2-2×3+3 |
|
Answer» 2-2 X 3+3Can also be written as:=>(2-2)(3+3)ie. =>(0)(6) =0 -1 |
|
| 6516. |
Since square A+cos square A= |
| Answer» 1 | |
| 6517. |
Find a quadratic polynomial whose zeroes are -5 and 4 |
|
Answer» Roots of the quadratic polynomial = {tex}2 - \\sqrt 3{/tex} and {tex}2 + \\sqrt 3{/tex}Sum of the roots = {tex}\\ (2 - \\sqrt 3) + (2 + \\sqrt 3){/tex} = 4Product of the roots =\xa0{tex}\\ (2 - \\sqrt 3) \\times (2 + \\sqrt 3){/tex} = 4 - 3 = 1Quadratic polynomial = x2\xa0- (sum of the roots)x + (product of the roots)= x2\xa0- 4x + 1. X2 + 5x + 4 |
|
| 6518. |
What is A mathematics |
| Answer» I think it\'s Applied Math. | |
| 6519. |
Explain Basic Proportionality Theorem. |
| Answer» | |
| 6520. |
For any posi |
| Answer» | |
| 6521. |
If the hcf of 657and 963,is expressible in the form 1032m-408*5 findx |
| Answer» Given numbers are 657 and 963 .Here, 657 < 963\xa0By using Euclid\'s Division algorithmm , we get963 = (657 × 1) + 306Here , remainder = 306 .So, On taking 657 as new dividend and 306 as the new divisor and then apply Euclid\'s Division lemma, we get657 = (306 × 2) + 45Here, remainder = 45\xa0So, On taking 306\xa0as new dividend and 45\xa0as the new divisor and then apply Euclid\'s Division lemma, we get306 = (45 × 6) + 36Here, remainder = 36So, On taking 45\xa0as new dividend and 36\xa0as the new divisor and then apply Euclid\'s Division lemma, we get45 = (36 × 1) + 9Here, remainder = 9So, On taking 36\xa0as new dividend and 9\xa0as the new divisor and then apply Euclid\'s Division lemma, we get36 = (9 × 4) + 0Here , remainder = 0 and last divisor is 9.\xa0Hence, HCF of 657 and 963 = 9.∴ 9 = 657x + 963(-15)⇒ 9 = 657x - 14445⇒ 657x = 9 + 14445⇒ 657x = 14454⇒x = 14454/657⇒ x =22 | |
| 6522. |
78-78 |
| Answer» 0 | |
| 6523. |
Find the sum of the following A.P.1,3,5,7,.............,199 |
| Answer» n/2(2a+(n-1)d)n/2(2+2n-2)=199 | |
| 6524. |
Prove that (a+b)^2=(a-b)^2 |
| Answer» | |
| 6525. |
How to find common |
|
Answer» D=a2-a1 a1-a2=d |
|
| 6526. |
x*x-1÷x*x=o find whether it is Quadratic equation?? |
| Answer» | |
| 6527. |
Find median Fi- 15-25. 25-35. 35-45. 45-55 55-65 65-75 75-85 85-95Ci-. 8. 10. 15. 25. 40. 20. 15. 7 |
| Answer» | |
| 6528. |
4x-3x-7 |
| Answer» 4x-3x-7=x-7 x=7 | |
| 6529. |
In the figure, angle B=90°, AD=CE=26m,BD=10m and AE =CD. Find BC. |
| Answer» . | |
| 6530. |
CotA + tanB/cotB + tanA = cotA × tanB |
| Answer» LHS: cotA + tanB / cotB + tanA= (cotA + 1/cotB) / (cotB + 1/cotA)= (cotAcotB + 1) / cotB / (cotAcotB + 1) / cotA= cotA / cotB= cotAtanB= RHS hence proved. | |
| 6531. |
Allmath\'10 |
| Answer» | |
| 6532. |
Root x+y is equal to 11 Root y+x is equal to 7 Find X and y |
| Answer» | |
| 6533. |
What is relationship in an AP in a, b, andc |
| Answer» | |
| 6534. |
If 5 tan =4 then find 5sin |
| Answer» 4/underroot 41 | |
| 6535. |
x^3-2x^2-x+2 |
| Answer» | |
| 6536. |
What is euclids division leema |
|
Answer» a=bq+r a=bq+r The positive integers a and b, there exist whole numbers q and r satisfying a=bq + r ,0 < r >b. a=bq+r |
|
| 6537. |
Prove that 5 is an irrational no. |
|
Answer» for proving that root 5 is a irrational no. first we have to accept that root 5 is rational.than we will contradic our guess by proving that 5 is irrational hey that is root 5. |
|
| 6538. |
If sin3A=cos(A-6),where 3A and (A-6)are both acute angles,then find the value of A |
|
Answer» 24 a=24 |
|
| 6539. |
Show that the paths represented by the equations x-3y=2 and -2x+6y=5 are parellel |
| Answer» | |
| 6540. |
Cos theta = 1/sin thita |
| Answer» | |
| 6541. |
value of 6^-1 |
| Answer» | |
| 6542. |
SinA+2cosA=1 prove that 2sinA+cosA=1 |
| Answer» | |
| 6543. |
SinA+2cosA=1 prove that |
| Answer» | |
| 6544. |
Show that x=-3 is solution of 2x(x)+5x-3=0 |
| Answer» X=3 thenP(x)= 2x(x)+5x-3P(-3)=2(-3)-3+5(-3)-3 =18-15-3 =18-18 =0Therefore -3 is a solution of the polynomial. | |
| 6545. |
What is a polynomial |
| Answer» | |
| 6546. |
What is theorem of AAA criteria |
|
Answer» AAA similarity criteriaif in two triangles ABC and DEF , corresponding Angles are equal ,then their corresponding sides are in the same ratio , and hence the two triangles ABC and DEF are similar.if LA=LD ,\xa0LB=LE , LC=LFthen AB/DE=BC/EF=CA/FDHence the two triangles ABC and DEF are similar\xa0\xa0 Two triangle have all three angles are equal |
|
| 6547. |
Prove thatCosθ+Tan^2\xa0θ-1/sin^2θ=tan^2θ |
| Answer» | |
| 6548. |
(Sinø+secø)² + (cosø+cosecø)²= (1+secø.cosecø) {ø= theta} |
| Answer» | |
| 6549. |
Prove convetse of bpt |
| Answer» | |
| 6550. |
7sin^2A +3cos^2A=4Find value of secA+cosecA |
| Answer» | |