Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6651.

If p and q are the zeroes of the equation x^2 +px-q ..Then find the value of p and q

Answer»
6652.

Find the median of the following dataMarks 20-30 30-40 40-5050-6060-7070-80No.of students51525207810

Answer»
6653.

Simplify cosec2 A÷ 1+ cot2 A

Answer» If 2 is square of the ratio then the answer is 1 ans:- cosec 2A =1÷sin2A and. 1+cot2A = 1 + cos2A ÷sin2A. 1÷sin2A÷sin2A +cos2A ÷sin 2A. Here , sin 2A get cut then. Remained is 1÷sin2A + cos2A. ( Sin2A +cos2A=1) 1÷1= 1
6654.

If x=a cos(theta), y=b sin(theta) then find the value of b^2x^2+a^2y^2-a^2b^2.

Answer»
6655.

Tan 3x = 1/ tan 2x , solve

Answer»
6656.

∆abc~∆def and their perimeters 32cm and 24cm respectively. If ab=10cm, find de

Answer» De = 7.5
6657.

Cosec A (secA – 1)– cot A (1–cos A)= tanA – sinA

Answer»
6658.

Prove that √2 is a irrational number

Answer»
6659.

Prove that √2 is an irrational number

Answer»
6660.

Gddhikvdik

Answer»
6661.

(234+453)(234-567)/2

Answer» -114385.5
6662.

(987654321×1234567890)+(45632÷324)-(35432+65764)/4364

Answer» isse solve krne se ashaa hum apna maths ka homework krleee
6663.

Prove irrational √n+1+√n-1

Answer» +1&-1 willcut out each other.Then, √n+√n will become2√n .√n is irratinal no.& if any irrational no. Multiplies with any rational no. The product is irrational. So √n+1+√n-1 is irrational.
6664.

PS is the bisecter of triangle PQR.prove that QS÷SR=PQ÷PR

Answer» Given: In figure. PS is the bisector of\xa0{tex}\\angle QPR{/tex} of\xa0{tex}\\triangle PQR{/tex}To prove :{tex}\\frac { Q S } { S R } = \\frac { P Q } { P R }{/tex}Construction: Draw RT || SP to meet QP produced in T.Proof:\xa0{tex}\\because {/tex}\xa0RT||SP and transversal PR intersects them{tex}\\therefore \\angle 1 = \\angle 2{/tex}\xa0(1) ..... Alt. Int.\xa0{tex}\\angle s{/tex}{tex}\\because {/tex}\xa0RT||SP and transversal QT intersects them{tex}\\therefore \\angle 3 = \\angle 4{/tex} (2), ..... corres.\xa0{tex}\\angle s{/tex}But\xa0{tex}\\angle 1 = \\angle 3{/tex}\xa0...... Given{tex}\\therefore \\angle 2 = \\angle 4{/tex}\xa0......From (1) and (2){tex}\\therefore P T = P R{/tex}\xa0(3) ......{tex}\\because {/tex}\xa0Sides opposite to equal angles of a triangle are equal\xa0Now in\xa0{tex}\\Delta \\mathrm { QRT }{/tex}PS = RT .......By construction{tex}\\therefore \\frac { Q S } { S R } = \\frac { P Q } { P T }{/tex}\xa0....... By basic proportionally theorem\xa0{tex}\\Rightarrow \\frac { Q S } { S R } = \\frac { P Q } { P R }{/tex}\xa0......From (3)
6665.

Is 0 a even number? If yes, then how and why?

Answer» Zero is an even number. In other words, its parity—the quality of an integer being even or odd—is even. The simplest way to prove that zero is even is to check that it fits the definition of "even": it is an integer multiple of 2, specifically 0 × 2.
6666.

NCERT class x .ch triangles ,ex- 6.3, ques no.- 10 & 14.

Answer»
6667.

7+77+777+............+777.......7=7/81(10n+1 - 9n -10)

Answer» Sn = 7 + 77 + 777 + ---- + n terms{tex}= \\frac { 7 } { 9 } [ 9 + 99 + 999 + - - - - + n \\text { terms } ]{/tex}{tex}= \\frac { 7 } { 9 }{/tex}[(10 - 1 ) + (102\xa0- 1) + (103\xa0- 1) + --- + n terms]{tex}= \\frac { 7 } { 9 }{/tex}[(101 + 102 + ---- +n terms) - (1 + 1 + 1 ---- + n terms)]{tex}= \\frac { 7 } { 9 } \\left[ \\frac { 10 \\left( 10 ^ { n } - 1 \\right) } { 10 - 1 } - n \\right]{/tex}{tex}= \\frac { 7 } { 9 } \\left[ \\frac { 10 \\left( 10 ^ { n } - 1 \\right) } { 9 } - n \\right]{/tex}
6668.

Sin2 A = 1/cosec2 A Is this true ??

Answer» Can u tell me how ?
Yes
6669.

31-20

Answer» 11
6670.

2-3

Answer»
6671.

what are the roots of 12-75x

Answer» X=4/25.
6672.

Please mathamatics book in hindi

Answer»
6673.

Px=xsquare+7x+9is divided by gx ,we get (x+2)and -1 as quetient and remainder respectively .find gx

Answer» Quadratic equation, p(x) = x2 + 7x + 9Quotient, q(x) = x + 2Remainder, r(x) = - 1Divisor, g(x) = ?p(x) = g(x) q(x) + r(x)x2+ 7x + 9 = g(x) (x + 2) - 1x2+7x+9+1 = g(x) (x+2)\xa0x2+7x+10 = g(x) (x+2){tex}\\therefore{/tex}\xa0g(x) =\xa0{tex}\\frac { x ^ { 2 } + 7 x + 10 } { x + 2 }{/tex}g(x) =\xa0{tex}\\frac {x^2+2x+5x+10}{x+2}{/tex}g(x) =\xa0{tex}\\frac {x(x+2)+5(x+2)}{x+2}{/tex}{tex}= \\frac { ( x + 2 ) ( x + 5 ) } { ( x + 2 ) }{/tex}g(x) = x + 5
6674.

Rational no. Between 2and4

Answer» Infinite.
3
6675.

Hvh

Answer»
6676.

Walhat is real root

Answer»
6677.

Root 5 is irrational prove

Answer» Lets assume root 5 is rational. Root 5 =a/b where a and b are co-prime b is not =0b root 5 =asquaring both sides 5b square =a square - - - - - - 15 divides a square =5 divides aa= 5ca square =25c square\t--put value of a square in 15b square =25c square (cutting both) b square =5c square 5 divides by b square=5 divides b and we know 5 divides a but a and b are co-prime = our supposition is wrong. = root 5 is irrational.
6678.

Will this year question paper become easy ?

Answer» No because in beginning everything is hard but not for all. So please study and do not lie on luck.
yes . bcz they collect only principal points throughout the book
6679.

Find quadratic polynomial sum and pooduct 1,1

Answer» x*-1x+1
6680.

What is consistent?

Answer» In case of linear equations in two variables this term is used....when there is unique solution or many solutions,the system of equations is said to be consistent.
6681.

Solve for X : 2-1/2-1/2-1/2-x

Answer» I think........... 2-x
6682.

Prove that 3+2=5

Answer» Squring both the sides
6683.

Exercise 8.3 example 14

Answer»
6684.

Evaluate cos1.cos2.cos3...........cos180

Answer» Oh awesomeCos1.cos2........Cos90......cos180(Cos90=0)=0
6685.

2n is a negative no.

Answer»
6686.

Use Euclid \'s division algorithm to find the HCF of 10224 and 9648.

Answer» Hoshiyara na dikhao ,book me hai. Chup chap kar lo?
6687.

In which ratio the segment joining point (-3,-4),(1-2)Divided by Y-axis

Answer»
6688.

x2+5x=1200

Answer»
6689.

Simple ways for applications of trignomatry

Answer»
6690.

2_3

Answer»
6691.

P (x)=(k+4) x square+13x+3k

Answer»
6692.

What is difference between rational number and irrational number?

Answer» Koi nahi kai. simple cheeze kisi ko ma pats ho to poochh Lena hi sahi very good for rising questions
Rational no. can be written in the form of a/b where b not= 0 if a number could not be written in this form then it is irrational
Itna bhi na pta
6693.

Math question

Answer»
6694.

Last year paper for math

Answer»
6695.

x²+3x-p By quadratic equation

Answer» Find it please
6696.

SinA+cosecA=2Then prove sin6A+ cosec6A=?

Answer»
6697.

2356+1

Answer» 2357
Answer is 2357
2357
6698.

Formula of cross multiplication

Answer»
6699.

Polymer

Answer»
6700.

The product of two consecutive positive integers is 306 we need to find the integers

Answer» Let the 1st number be x . So the 2nd number be x+1. Acc. to question , (x)(x+1)=306 After solving this we get x^2 + x = 306. Then x^2 + x - 306 = 0 . Then by middle term factorization, we get x^2 + 17x - 18x - 306 = 0. Then x(x + 17) - 18(x + 17). Then (x - 18) (x - 17) = 0. Then x = 17 and x= 18. Therefore the integers are 17 and 18
17 and 18
X(x+1)=306X^2+x-306=0Simplyfy the qudratic equation and u will get the answer as 17 and 18